\[ -\left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \ldots + \frac{1}{\alpha + 2012} \right) - \left\{ \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \ldots + \left( \frac{1}{2023} - \frac{1}{2024} \right) \right\} = \frac{1}{2024} \] \[ \Rightarrow \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \ldots + \frac{1}{\alpha + 2012} \right) - \left\{ \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{2023} \right) \right\} - \frac{1}{2024} - 2\left( \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2022} \right) = \frac{1}{2024} \] \[ \Rightarrow \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \ldots + \frac{1}{\alpha + 2012} \right) - \left( \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{2023} \right) + \frac{1}{2024} + \left( \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{1011} \right) = \frac{1}{2024} \] \[ \Rightarrow \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \ldots + \frac{1}{\alpha + 2012} = \frac{1}{1012} + \frac{1}{1013} + \ldots + \frac{1}{2023} \] \[ \Rightarrow \alpha = 1011 \]
Step 1: First Sum Expression
We are given:
\[ S_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k} \]
This is the sum of the reciprocals of consecutive integers starting from \(\alpha + 1\) to \(\alpha + 1012\).
Step 2: Second Sum Expression
The second sum is:
\[ S_2 = \sum_{k=1}^{1012} \frac{1}{2k \cdot (2k - 1)} \]
We can simplify each term of the second sum:
\[ \frac{1}{2k \cdot (2k - 1)} = \frac{1}{2k - 1} - \frac{1}{2k} \]
Thus, the second sum \(S_2\) becomes:
\[ S_2 = \sum_{k=1}^{1012} \left( \frac{1}{2k - 1} - \frac{1}{2k} \right) \]
This is a telescoping series, and many terms cancel out. After cancellation, we are left with:
\[ S_2 = 1 - \frac{1}{2024} \]
Step 3: Combine the Two Sums
Now, we substitute both sums \(S_1\) and \(S_2\) into the given equation:
\[ S_1 - S_2 = \frac{1}{2024} \]
Substitute \(S_2\):
\[ S_1 - \left( 1 - \frac{1}{2024} \right) = \frac{1}{2024} \]
Simplifying the equation:
\[ S_1 - 1 + \frac{1}{2024} = \frac{1}{2024} \]
\[ S_1 = 1 \]
Step 4: Solving for \(\alpha\)
We know that:
\[ S_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k} = 1 \]
We can now express the equation as:
\[ \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024} \]
Rewriting this as:
\[ \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024} \]
This simplifies to:
\[ \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} = 1 + 1 + \frac{1}{2024} \]
The equation simplifies to:
\[ \alpha = 1011 \]
Thus, the value of \(\alpha\) is: 1011
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Electricity is passed through an acidic solution of Cu$^{2+}$ till all the Cu$^{2+}$ was exhausted, leading to the deposition of 300 mg of Cu metal. However, a current of 600 mA was continued to pass through the same solution for another 28 minutes by keeping the total volume of the solution fixed at 200 mL. The total volume of oxygen evolved at STP during the entire process is ___ mL. (Nearest integer)
Given:
$\mathrm{Cu^{2+} + 2e^- \rightarrow Cu(s)}$
$\mathrm{O_2 + 4H^+ + 4e^- \rightarrow 2H_2O}$
Faraday constant = 96500 C mol$^{-1}$
Molar volume at STP = 22.4 L
The formal charges on the atoms marked as (1) to (4) in the Lewis representation of \( \mathrm{HNO_3} \) molecule respectively are 
The velocity (\(v\)) – distance (\(x\)) graph is shown in the figure. Which graph represents acceleration (\(a\)) versus distance (\(x\)) variation of this system? 
