Step 1: First Sum Expression
We are given:
\[ S_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k} \]
This is the sum of the reciprocals of consecutive integers starting from \(\alpha + 1\) to \(\alpha + 1012\).
Step 2: Second Sum Expression
The second sum is:
\[ S_2 = \sum_{k=1}^{1012} \frac{1}{2k \cdot (2k - 1)} \]
We can simplify each term of the second sum:
\[ \frac{1}{2k \cdot (2k - 1)} = \frac{1}{2k - 1} - \frac{1}{2k} \]
Thus, the second sum \(S_2\) becomes:
\[ S_2 = \sum_{k=1}^{1012} \left( \frac{1}{2k - 1} - \frac{1}{2k} \right) \]
This is a telescoping series, and many terms cancel out. After cancellation, we are left with:
\[ S_2 = 1 - \frac{1}{2024} \]
Step 3: Combine the Two Sums
Now, we substitute both sums \(S_1\) and \(S_2\) into the given equation:
\[ S_1 - S_2 = \frac{1}{2024} \]
Substitute \(S_2\):
\[ S_1 - \left( 1 - \frac{1}{2024} \right) = \frac{1}{2024} \]
Simplifying the equation:
\[ S_1 - 1 + \frac{1}{2024} = \frac{1}{2024} \]
\[ S_1 = 1 \]
Step 4: Solving for \(\alpha\)
We know that:
\[ S_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k} = 1 \]
We can now express the equation as:
\[ \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024} \]
Rewriting this as:
\[ \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024} \]
This simplifies to:
\[ \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} = 1 + 1 + \frac{1}{2024} \]
The equation simplifies to:
\[ \alpha = 1011 \]
Thus, the value of \(\alpha\) is: 1011
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: