Step 1: First Sum Expression
We are given:
\[ S_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k} \]
This is the sum of the reciprocals of consecutive integers starting from \(\alpha + 1\) to \(\alpha + 1012\).
Step 2: Second Sum Expression
The second sum is:
\[ S_2 = \sum_{k=1}^{1012} \frac{1}{2k \cdot (2k - 1)} \]
We can simplify each term of the second sum:
\[ \frac{1}{2k \cdot (2k - 1)} = \frac{1}{2k - 1} - \frac{1}{2k} \]
Thus, the second sum \(S_2\) becomes:
\[ S_2 = \sum_{k=1}^{1012} \left( \frac{1}{2k - 1} - \frac{1}{2k} \right) \]
This is a telescoping series, and many terms cancel out. After cancellation, we are left with:
\[ S_2 = 1 - \frac{1}{2024} \]
Step 3: Combine the Two Sums
Now, we substitute both sums \(S_1\) and \(S_2\) into the given equation:
\[ S_1 - S_2 = \frac{1}{2024} \]
Substitute \(S_2\):
\[ S_1 - \left( 1 - \frac{1}{2024} \right) = \frac{1}{2024} \]
Simplifying the equation:
\[ S_1 - 1 + \frac{1}{2024} = \frac{1}{2024} \]
\[ S_1 = 1 \]
Step 4: Solving for \(\alpha\)
We know that:
\[ S_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k} = 1 \]
We can now express the equation as:
\[ \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024} \]
Rewriting this as:
\[ \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024} \]
This simplifies to:
\[ \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} = 1 + 1 + \frac{1}{2024} \]
The equation simplifies to:
\[ \alpha = 1011 \]
Thus, the value of \(\alpha\) is: 1011
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + ... \infty = \frac{\pi^4}{90}, $ $ \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + ... \infty = \alpha, $ $ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + ... \infty = \beta, $ then $ \frac{\alpha}{\beta} $ is equal to: