\[ -\left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \ldots + \frac{1}{\alpha + 2012} \right) - \left\{ \left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \ldots + \left( \frac{1}{2023} - \frac{1}{2024} \right) \right\} = \frac{1}{2024} \] \[ \Rightarrow \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \ldots + \frac{1}{\alpha + 2012} \right) - \left\{ \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{2023} \right) \right\} - \frac{1}{2024} - 2\left( \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2022} \right) = \frac{1}{2024} \] \[ \Rightarrow \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \ldots + \frac{1}{\alpha + 2012} \right) - \left( \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{2023} \right) + \frac{1}{2024} + \left( \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{1011} \right) = \frac{1}{2024} \] \[ \Rightarrow \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \ldots + \frac{1}{\alpha + 2012} = \frac{1}{1012} + \frac{1}{1013} + \ldots + \frac{1}{2023} \] \[ \Rightarrow \alpha = 1011 \]
Step 1: First Sum Expression
We are given:
\[ S_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k} \]
This is the sum of the reciprocals of consecutive integers starting from \(\alpha + 1\) to \(\alpha + 1012\).
Step 2: Second Sum Expression
The second sum is:
\[ S_2 = \sum_{k=1}^{1012} \frac{1}{2k \cdot (2k - 1)} \]
We can simplify each term of the second sum:
\[ \frac{1}{2k \cdot (2k - 1)} = \frac{1}{2k - 1} - \frac{1}{2k} \]
Thus, the second sum \(S_2\) becomes:
\[ S_2 = \sum_{k=1}^{1012} \left( \frac{1}{2k - 1} - \frac{1}{2k} \right) \]
This is a telescoping series, and many terms cancel out. After cancellation, we are left with:
\[ S_2 = 1 - \frac{1}{2024} \]
Step 3: Combine the Two Sums
Now, we substitute both sums \(S_1\) and \(S_2\) into the given equation:
\[ S_1 - S_2 = \frac{1}{2024} \]
Substitute \(S_2\):
\[ S_1 - \left( 1 - \frac{1}{2024} \right) = \frac{1}{2024} \]
Simplifying the equation:
\[ S_1 - 1 + \frac{1}{2024} = \frac{1}{2024} \]
\[ S_1 = 1 \]
Step 4: Solving for \(\alpha\)
We know that:
\[ S_1 = \sum_{k=1}^{1012} \frac{1}{\alpha + k} = 1 \]
We can now express the equation as:
\[ \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024} \]
Rewriting this as:
\[ \left( \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} \right) = \left( 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2023} \right) + \frac{1}{2024} \]
This simplifies to:
\[ \frac{1}{\alpha + 1} + \frac{1}{\alpha + 2} + \cdots + \frac{1}{\alpha + 1012} = 1 + 1 + \frac{1}{2024} \]
The equation simplifies to:
\[ \alpha = 1011 \]
Thus, the value of \(\alpha\) is: 1011
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
