We have:
\[U_{10} = \alpha^{10} + \beta^{10} \quad \text{and} \quad U_9 = \alpha^9 + \beta^9\]
Then:
\[\frac{U_{10} + \sqrt{12} U_9}{2 U_8} = \frac{\alpha^{10} + \beta^{10} + \sqrt{2} (\alpha^9 + \beta^9)}{2 \left( \alpha^8 + \beta^8 \right)}\]
Further simplifying, we get:
\[= \frac{\alpha^8 \left( \alpha^2 + \sqrt{2} \alpha \right) + \beta^8 \left( \beta^2 + \sqrt{2} \beta \right)}{2 \left( \alpha^8 + \beta^8 \right)}\]
Grouping terms, we have:
\[= \frac{8 \alpha^8 + 8 \beta^8}{2 \left( \alpha^8 + \beta^8 \right)} = 4\]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: