Let the A.P. have the first term \( a = 1 \) and common difference \( d \). Then:
\[ \text{2nd term} = 1 + d, \quad \text{8th term} = 1 + 7d, \quad \text{44th term} = 1 + 43d \]
These terms are in G.P., so:
\[ (1 + 7d)^2 = (1 + d)(1 + 43d) \]
Expanding and simplifying:
\[ 1 + 49d^2 + 14d = 1 + 44d + 43d^2 \] \[ 6d^2 - 30d = 0 \] \[ d = 5 \]
The sum of the first 20 terms of the A.P. is:
\[ S_{20} = \frac{20}{2} \left[ 2 \cdot 1 + (20 - 1) \cdot 5 \right] \] \[ = 10 \cdot (2 + 95) = 10 \cdot 97 = 970 \]
Thus, the answer is:
970
If \(\sum\)\(_{r=1}^n T_r\) = \(\frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\) , then \( \lim_{n \to \infty} \sum_{r=1}^n \frac{1}{T_r} \) is equal to :
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: