Given that \(AA^\top = I\), we can substitute this property in the expression.
\[ \frac{1}{2} A \left[(A + A^\top)^2 + (A - A^\top)^2\right] \]
Expanding \((A + A^\top)^2\) and \((A - A^\top)^2\), we get:
\[ \frac{1}{2} A \left[A^2 + (A^\top)^2 + 2AA^\top + A^2 + (A^\top)^2 - 2AA^\top\right] \]
\[ = A \left[A^2 + (A^\top)^2\right] \]
\[ = A^3 + A^\top \]
So, the correct answer is: \(A^3 + A^\top\)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: