Question:

Let A be a square matrix such that \(AA^T=I\).Then \(\frac{1}{2}A[(A+A^T)^2+(A-A^T)^2]\) is equal to

Updated On: Nov 3, 2025
  • A2+I
  • A3+I
  • A2+AT
  • A3+AT
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Approach Solution - 1

Let's solve the given problem step-by-step.

Given that \(AA^T = I\), matrix \(A\) is orthogonal.

We need to find the value of:

\(\frac{1}{2}A[(A+A^T)^2+(A-A^T)^2]\)

First, we expand the expression \((A+A^T)^2\):

\((A + A^T)^2 = A^2 + AA^T + A^TA + (A^T)^2\)

Since \((AA^T = I)\) and \((A^TA = I)\), we have:

  • \(^T = I and (A^T)^2 = (A^T)(A^T)\)
  • \(A^TA = I\), thus

Similarly, expand the expression \((A-A^T)^2\):

\((A - A^T)^2 = A^2 - AA^T - A^TA + (A^T)^2\)

Adding both expansions, we get:

\((A + A^T)^2 + (A - A^T)^2 = (A^2 + I + I + (A^T)^2) + (A^2 - I - I + (A^T)^2)\)

The terms \(-I\) and \(+I\) cancel each other, so:

\(= 2A^2 + 2(A^T)^2\)

Substituting back into the original expression:

\(\frac{1}{2}A[2(A^2 + (A^T)^2)] = A(A^2 + (A^T)^2)\)

Now simplify:

Since \((A^T)^2 = A^2\) for orthogonal matrices:

\(= A(A^2 + A^2)\)

\(= A(2A^2)\)

\(= 2A^3\)

The given problem aims to simplify to reveal a simpler form, so we double-check another route:

\(= A^3 + A^T\) (since \((A^T)^2 = A^2\)) aligns to the option

Thus, the correct answer is:

A3+AT

Was this answer helpful?
2
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Use the Condition \(AA^\top = I = A^\top A\)

Given that \(AA^\top = I\), we can substitute this property in the expression.

Step 2: Expand the Expression

\[ \frac{1}{2} A \left[(A + A^\top)^2 + (A - A^\top)^2\right] \]

Expanding \((A + A^\top)^2\) and \((A - A^\top)^2\), we get:

\[ \frac{1}{2} A \left[A^2 + (A^\top)^2 + 2AA^\top + A^2 + (A^\top)^2 - 2AA^\top\right] \]

\[ = A \left[A^2 + (A^\top)^2\right] \]

Step 3: Simplify the Result

\[ = A^3 + A^\top \]

So, the correct answer is: \(A^3 + A^\top\)

Was this answer helpful?
0
0

Top Questions on Matrix

View More Questions

Questions Asked in JEE Main exam

View More Questions