Given that \(AA^\top = I\), we can substitute this property in the expression.
\[ \frac{1}{2} A \left[(A + A^\top)^2 + (A - A^\top)^2\right] \]
Expanding \((A + A^\top)^2\) and \((A - A^\top)^2\), we get:
\[ \frac{1}{2} A \left[A^2 + (A^\top)^2 + 2AA^\top + A^2 + (A^\top)^2 - 2AA^\top\right] \]
\[ = A \left[A^2 + (A^\top)^2\right] \]
\[ = A^3 + A^\top \]
So, the correct answer is: \(A^3 + A^\top\)
L | R | |
U | 0, 0 | 0, −c |
D | −c, 0 | 1 − c, 1 − c |
a | X | Y | Z |
M | 3, 1 | 0, 0 | −1, 2 |
N | 0, 0 | 1, 3 | 0.5, 1 |
Which set of strategy profiles survives iterated elimination of strictly dominated strategies?