Given that \(AA^\top = I\), we can substitute this property in the expression.
\[ \frac{1}{2} A \left[(A + A^\top)^2 + (A - A^\top)^2\right] \]
Expanding \((A + A^\top)^2\) and \((A - A^\top)^2\), we get:
\[ \frac{1}{2} A \left[A^2 + (A^\top)^2 + 2AA^\top + A^2 + (A^\top)^2 - 2AA^\top\right] \]
\[ = A \left[A^2 + (A^\top)^2\right] \]
\[ = A^3 + A^\top \]
So, the correct answer is: \(A^3 + A^\top\)
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32