1. From the given probability distribution, the total probability must equal 1:
\[ \sum P_i = 1 \implies a + 2a + a + b + 2b + 3b = 1. \]
Simplify:
\[ 4a + 6b = 1 \quad \cdots \text{(I)} \]
2. The mean is given by:
\[ E(X) = \sum P_i X_i = \frac{46}{9}. \]
Substitute the probabilities:
\[ E(X) = 0 \times a + 2 \times 2a + 4 \times (a + b) + 6 \times 2b + 8 \times 3b. \]
Simplify:
\[ 4a + 4b + 12b + 24b = \frac{46}{9}, \]
\[ 8a + 40b = \frac{46}{9} \quad \cdots \text{(II)}. \]
3. Solve equations (I) and (II) simultaneously: From (I): \(b = \frac{1}{9} - \frac{2a}{3}\). Substitute \(b = \frac{1}{9}\) and solve to find:
\[ a = \frac{1}{12}, \quad b = \frac{1}{9}. \]
4. Variance is calculated as:
\[ \text{Variance} = E(X^2) - (E(X))^2. \]
Step 1: Find \(E(X^2)\):
\[ E(X^2) = \sum P_i X_i^2 = 0^2 \times a + 2^2 \times 2a + 4^2 \times (a + b) + 6^2 \times 2b + 8^2 \times 3b. \]
Simplify:
\[ E(X^2) = 4a + 16(a + b) + 72b + 192b. \]
Substitute \(a = \frac{1}{12}, b = \frac{1}{9}\):
\[ E(X^2) = \frac{298}{9}. \]
Step 2: Find \((E(X))^2\):
\[ (E(X))^2 = \left(\frac{46}{9}\right)^2 = \frac{2116}{81}. \]
Step 3: Calculate variance:
\[ \text{Variance} = \frac{298}{9} - \frac{2116}{81} = \frac{566}{81}. \]
The probability distribution of the random variable X is given by
X | 0 | 1 | 2 | 3 |
---|---|---|---|---|
P(X) | 0.2 | k | 2k | 2k |
Find the variance of the random variable \(X\).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: