Given the sets:
\[ A = \{2, 3, 6, 7\}, \quad B = \{2, 5, 6, 8\} \]
The relation \( (a_1, b_1) \, R \, (a_2, b_2) \) is defined by:
\[ a_1 + a_2 = b_1 + b_2 \]
We list all possible valid pairs \((a_1, b_1)\) and \((a_2, b_2)\) satisfying the condition:
\[ \begin{aligned} 1. &(2, 4)R(6, 4) &\quad 2. &(2, 4)R(7, 5) \\ 3. &(2, 5)R(7, 4) &\quad 4. &(3, 4)R(6, 5) \\ 5. &(3, 5)R(6, 4) &\quad 6. &(3, 5)R(7, 5) \\ 7. &(3, 6)R(7, 4) &\quad 8. &(3, 4)R(7, 6) \\ 9. &(6, 5)R(7, 8) &\quad 10. &(6, 8)R(7, 5) \\ 11. &(7, 8)R(7, 6) &\quad 12. &(6, 8)R(6, 4) \\ 13. &(6, 6)R(6, 6) \end{aligned} \] × 2
Thus, the total number of such relations is:
\[ 24 + 1 = 25 \]
Step 1: Analyze the relation The sets are:
\[ A = \{2, 3, 6, 7\}, \quad B = \{4, 5, 6, 8\}. \]
The condition \((a_1, b_1) \, R \, (a_2, b_2)\) holds if:
\[ a_1 + a_2 = b_1 + b_2. \]
Step 2: Calculate valid pairs We evaluate all possible pairs \((a_1, b_1)\) and \((a_2, b_2)\) such that the condition holds.
Example pairs:
Total count: By systematically counting valid combinations, we find there are 24 such pairs. Additionally, there is one reflexive pair \((6, 6) \, R \, (6, 6)\).
Step 3: Total number of elements
Total number of elements in \(R = 24 + 1 = 25.\)
Final Answer: 25.
Let $R$ be a relation defined on the set $\{1,2,3,4\times\{1,2,3,4\}$ by \[ R=\{((a,b),(c,d)) : 2a+3b=3c+4d\} \] Then the number of elements in $R$ is
Let \(M = \{1, 2, 3, ....., 16\}\), if a relation R defined on set M such that R = \((x, y) : 4y = 5x – 3, x, y (\in) M\). How many elements should be added to R to make it symmetric.
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 