Given expression:
(1+2x−3x3)(23x2−3x1)9
General term:
Tr=(r9)(23x2)9−r(−3x1)r
Simplifying:
Tr=(r9)(23)9−r(−31)rx2(9−r)x−r=(r9)(23)9−r(−31)rx18−3r
To find the constant term, we set the exponent of x to zero:
18−3r=0⟹r=6
Substituting r=6 into the expression:
T6=(69)(23)3(−31)6
Calculating each term:
(69)=84,(23)3=827,(−31)6=7291 T6=84×827×7291=187
Next, substituting r=7 to find the coefficient of x−3:
T7=(79)(23)2(−31)7
Calculating:
(79)=36,(23)2=49,(−31)7=−21871 T7=36×49×−21871=−271
Combining the terms:
(1+2x−3x3)(187+27−1x3)
Simplifying:
Constant term=187
Given that p is the constant term, we have p=187. Calculating 108p:
108p=108×187=54