Given expression:
\[ \left(1 + 2x - 3x^3\right)\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9 \]
General term:
\[ T_r = \binom{9}{r} \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r \]
Simplifying:
\[ T_r = \binom{9}{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{2(9-r)}x^{-r} = \binom{9}{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{18-3r} \]
To find the constant term, we set the exponent of \(x\) to zero:
\[ 18 - 3r = 0 \implies r = 6 \]
Substituting \(r = 6\) into the expression:
\[ T_6 = \binom{9}{6} \left(\frac{3}{2}\right)^3 \left(-\frac{1}{3}\right)^6 \]
Calculating each term:
\[ \binom{9}{6} = 84, \quad \left(\frac{3}{2}\right)^3 = \frac{27}{8}, \quad \left(-\frac{1}{3}\right)^6 = \frac{1}{729} \] \[ T_6 = 84 \times \frac{27}{8} \times \frac{1}{729} = \frac{7}{18} \]
Next, substituting \(r = 7\) to find the coefficient of \(x^{-3}\):
\[ T_7 = \binom{9}{7} \left(\frac{3}{2}\right)^2 \left(-\frac{1}{3}\right)^7 \]
Calculating:
\[ \binom{9}{7} = 36, \quad \left(\frac{3}{2}\right)^2 = \frac{9}{4}, \quad \left(-\frac{1}{3}\right)^7 = -\frac{1}{2187} \] \[ T_7 = 36 \times \frac{9}{4} \times -\frac{1}{2187} = -\frac{1}{27} \]
Combining the terms:
\[ \left(1 + 2x - 3x^3\right)\left(\frac{7}{18} + \frac{-1}{27}x^3\right) \]
Simplifying:
\[ \text{Constant term} = \frac{7}{18} \]
Given that \(p\) is the constant term, we have \(p = \frac{7}{18}\). Calculating \(108p\):
\[ 108p = 108 \times \frac{7}{18} = 54 \]
If the set of all values of \( a \), for which the equation \( 5x^3 - 15x - a = 0 \) has three distinct real roots, is the interval \( (\alpha, \beta) \), then \( \beta - 2\alpha \) is equal to
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32