Question:

If the constant term in the expansion of (1+2x3x3)(32x213x)9(1 + 2x - 3x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9 is p p , then 108p 108p is equal to _________.

Updated On: Mar 13, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 54

Solution and Explanation

Given expression:

(1+2x3x3)(32x213x)9 \left(1 + 2x - 3x^3\right)\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9

General term:

Tr=(9r)(32x2)9r(13x)r T_r = \binom{9}{r} \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r

Simplifying:

Tr=(9r)(32)9r(13)rx2(9r)xr=(9r)(32)9r(13)rx183r T_r = \binom{9}{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{2(9-r)}x^{-r} = \binom{9}{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^r x^{18-3r}

To find the constant term, we set the exponent of xx to zero:

183r=0    r=6 18 - 3r = 0 \implies r = 6

Substituting r=6r = 6 into the expression:

T6=(96)(32)3(13)6 T_6 = \binom{9}{6} \left(\frac{3}{2}\right)^3 \left(-\frac{1}{3}\right)^6

Calculating each term:

(96)=84,(32)3=278,(13)6=1729 \binom{9}{6} = 84, \quad \left(\frac{3}{2}\right)^3 = \frac{27}{8}, \quad \left(-\frac{1}{3}\right)^6 = \frac{1}{729} T6=84×278×1729=718 T_6 = 84 \times \frac{27}{8} \times \frac{1}{729} = \frac{7}{18}

Next, substituting r=7r = 7 to find the coefficient of x3x^{-3}:

T7=(97)(32)2(13)7 T_7 = \binom{9}{7} \left(\frac{3}{2}\right)^2 \left(-\frac{1}{3}\right)^7

Calculating:

(97)=36,(32)2=94,(13)7=12187 \binom{9}{7} = 36, \quad \left(\frac{3}{2}\right)^2 = \frac{9}{4}, \quad \left(-\frac{1}{3}\right)^7 = -\frac{1}{2187} T7=36×94×12187=127 T_7 = 36 \times \frac{9}{4} \times -\frac{1}{2187} = -\frac{1}{27}

Combining the terms:

(1+2x3x3)(718+127x3) \left(1 + 2x - 3x^3\right)\left(\frac{7}{18} + \frac{-1}{27}x^3\right)

Simplifying:

Constant term=718 \text{Constant term} = \frac{7}{18}

Given that pp is the constant term, we have p=718p = \frac{7}{18}. Calculating 108p108p:

108p=108×718=54 108p = 108 \times \frac{7}{18} = 54

Was this answer helpful?
4
12

Top Questions on Algebra

View More Questions