Step 1: Direction Ratios of Line \( L \):
The direction ratios of line \( L \) passing through \( P(1,2,1) \) and \( Q(2,1,-1) \) are: \[ \text{DR's of } L = (2 - 1, 1 - 2, -1 - 1) = 1 : -1 : -2. \]
Step 2: Direction Ratios of \( AB \):
Let \( B(\alpha, \beta, \gamma) \) be the mirror image of \( A(2,2,2) \) in line \( L \). Then, the direction ratios of \( AB \) are: \[ (\alpha - 2, \beta - 2, \gamma - 2). \]
Step 3: Perpendicular Condition:
Since \( AB \) is perpendicular to line \( L \), we have: \[ 1(\alpha - 2) - 1(\beta - 2) - 2(\gamma - 2) = 0. \] Simplifying, we get: \[ \alpha - \beta - 2\gamma = -4. \tag{1} \]
Step 4: Finding the Midpoint \( C \) of \( AB \):
The midpoint \( C \) of \( AB \) lies on the line \( L \), so: \[ C = \left(\frac{\alpha + 2}{2}, \frac{\beta + 2}{2}, \frac{\gamma + 2}{2}\right). \]
Step 5: Direction Ratios of \( PC \) and Parallel Condition:
The direction ratios of \( PC \) are: \[ \left(\frac{\alpha - 2}{2}, \frac{\beta - 2}{2}, \frac{\gamma - 2}{2}\right). \] Since line \( L \) is parallel to \( PC \), we have: \[ \frac{\alpha - 2}{2} : \frac{\beta - 2}{2} : \frac{\gamma - 2}{2} = 1 : -1 : -2. \] This gives: \[ \alpha - 2 = -2K, \quad \beta - 2 = 2K, \quad \gamma - 2 = 4K. \] Solving for \( \alpha \), \( \beta \), and \( \gamma \), we get: \[ \alpha = -2K + 2, \quad \beta = 2K + 2, \quad \gamma = 4K + 2. \]
Step 6: Substitute into Equation (1):
Substitute these values into equation (1): \[ -2K + 2 - (2K + 2) - 2(4K + 2) = -4. \] Solving for \( K \), we find: \[ K = \frac{1}{6}. \]
Step 7: Calculating \( \alpha + \beta + 6\gamma \):
Substitute \( K = \frac{1}{6} \) into the expressions for \( \alpha \), \( \beta \), and \( \gamma \): \[ \alpha = -2 \times \frac{1}{6} + 2 = \frac{10}{6} = \frac{5}{3}, \] \[ \beta = 2 \times \frac{1}{6} + 2 = \frac{14}{6} = \frac{7}{3}, \] \[ \gamma = 4 \times \frac{1}{6} + 2 = \frac{16}{6} = \frac{8}{3}. \] Therefore, \[ \alpha + \beta + 6\gamma = \frac{5}{3} + \frac{7}{3} + 6 \times \frac{8}{3} = \frac{24}{3} = 6. \]
Answer: 6
Given:
Line \( L \) through points \( P(1, 2, 1) \) and \( Q(2, 1, -1) \)
Point \( A(2, 2, 2) \)
Find mirror image \( A'(\alpha, \beta, \gamma) \) of \( A \) about line \( L \) and calculate \( \alpha + \beta + 6\gamma \).
Step 1: Direction vector of line \( L \)
\[ \vec{d} = Q - P = (2-1, 1-2, -1-1) = (1, -1, -2) \] Step 2: Vector \( \vec{PA} \)
\[ \vec{PA} = A - P = (2-1, 2-2, 2-1) = (1, 0, 1) \] Step 3: Find projection of \( \vec{PA} \) on \( \vec{d} \)
\[ \text{proj}_{\vec{d}} (\vec{PA}) = \frac{\vec{PA} \cdot \vec{d}}{\vec{d} \cdot \vec{d}} \vec{d} \] Calculate dot products: \[ \vec{PA} \cdot \vec{d} = 1 \times 1 + 0 \times (-1) + 1 \times (-2) = 1 + 0 -2 = -1 \] \[ \vec{d} \cdot \vec{d} = 1^2 + (-1)^2 + (-2)^2 = 1 + 1 + 4 = 6 \] So, \[ \text{proj}_{\vec{d}} (\vec{PA}) = \frac{-1}{6} (1, -1, -2) = \left(-\frac{1}{6}, \frac{1}{6}, \frac{1}{3}\right) \] Step 4: Find point \( R \) on line closest to \( A \)
\[ R = P + \text{proj}_{\vec{d}} (\vec{PA}) = \left(1 - \frac{1}{6}, 2 + \frac{1}{6}, 1 + \frac{1}{3}\right) = \left(\frac{5}{6}, \frac{13}{6}, \frac{4}{3}\right) \] Step 5: Find vector \( \vec{AR} \)
\[ \vec{AR} = R - A = \left(\frac{5}{6} - 2, \frac{13}{6} - 2, \frac{4}{3} - 2\right) = \left(-\frac{7}{6}, \frac{1}{6}, -\frac{2}{3}\right) \] Step 6: Find mirror image \( A' \)
Mirror image \( A' = A + 2 \vec{AR} \): \[ A' = \left(2 - \frac{14}{6}, 2 + \frac{2}{6}, 2 - \frac{4}{3}\right) = \left(2 - \frac{7}{3}, 2 + \frac{1}{3}, 2 - \frac{4}{3}\right) = \left(\frac{-1}{3}, \frac{7}{3}, \frac{2}{3}\right) \] Step 7: Calculate \( \alpha + \beta + 6\gamma \)
\[ \alpha + \beta + 6 \gamma = -\frac{1}{3} + \frac{7}{3} + 6 \times \frac{2}{3} = \frac{6}{3} + 4 = 2 + 4 = 6 \] Final answer: 6
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
