Let \( A = \begin{bmatrix} 1 & \sqrt{2} \\ -2 & 0 & 1 \end{bmatrix} \)
and \( P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \),
\( \theta > 0 \). If \( B = P A P^T \), \( C = P^T B P \), and the sum of the diagonal elements of \( C \) is \( \frac{m}{n} \),
where \( \gcd(m, n) = 1 \), then \( m + n \) is: