Step 1: Understand the equations.
The equation of the circle is \((x - 2\sqrt{3})^2 + y^2 = 12\).
The center of the circle is \((2\sqrt{3}, 0)\) and the radius is \(\sqrt{12} = 2\sqrt{3}\).
The equation of the parabola is \(y^2 = 2\sqrt{3}x\).
Step 2: Find the intersection points.
Substitute \(y^2 = 2\sqrt{3}x\) into the equation of the circle:
\((x - 2\sqrt{3})^2 + 2\sqrt{3}x = 12\)
\(x^2 - 4\sqrt{3}x + 12 + 2\sqrt{3}x = 12\)
\(x^2 - 2\sqrt{3}x = 0\)
\(x(x - 2\sqrt{3}) = 0\)
So, \(x = 0\) or \(x = 2\sqrt{3}\).
When \(x = 0\), \(y^2 = 0\), so \(y = 0\).
When \(x = 2\sqrt{3}\), \(y^2 = 2\sqrt{3}(2\sqrt{3}) = 12\), so \(y = \pm 2\sqrt{3}\).
The intersection points are \((0, 0)\), \((2\sqrt{3}, 2\sqrt{3})\), and \((2\sqrt{3}, -2\sqrt{3})\).
Step 3: Calculate the area.
The required area is the area of the semi-circle minus the area enclosed by the parabola and the x-axis between \(x = 0\) and \(x = 2\sqrt{3}\).
Area of the semi-circle = \(\frac{1}{2} \pi r^2 = \frac{1}{2} \pi (12) = 6\pi\).
Area under the parabola between \(x = 0\) and \(x = 2\sqrt{3}\) is:
\(2\int_0^{2\sqrt{3}} \sqrt{2\sqrt{3}x} \, dx = 2\sqrt{2\sqrt{3}} \int_0^{2\sqrt{3}} x^{1/2} \, dx\)
\(= 2\sqrt{2\sqrt{3}} \left[ \frac{2}{3} x^{3/2} \right]_0^{2\sqrt{3}} = 2\sqrt{2\sqrt{3}} \cdot \frac{2}{3} (2\sqrt{3})^{3/2}\)
\(= \frac{4}{3} \sqrt{2\sqrt{3}} \cdot 2\sqrt{3} \sqrt{2\sqrt{3}} = \frac{4}{3} \cdot 2\sqrt{3} \cdot 2\sqrt{3} = \frac{4}{3} \cdot 12 = 16\)
Required area = \(6\pi - 16\).
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
Find \( P(0<X<5) \).