We are given:
\[
|A| = -2
\]
\[
\text{det}(3 \cdot \text{adj}(-6 \cdot \text{adj}(3A))) = 3^3 \cdot \text{det}(\text{adj}(-\text{adj}(3A)))
\]
Simplifying this:
\[
\text{det}(3 \cdot \text{adj}(-6 \cdot \text{adj}(3A))) = 3^3 \cdot 6^6 \cdot \text{det}(3A)^4
\]
We know that:
\[
3^{21} \cdot 2^{10} = 3^7 \cdot 2^3
\]
Thus, solving for \( m \) and \( n \), we find:
\[
m + n = 10, \quad mn = 21
\]
Solving for \( m \) and \( n \), we get:
\[
m = 7, \quad n = 3
\]
Therefore, \( 4m + 2n = 4 \times 7 + 2 \times 3 = 28 + 6 = 34 \).