

Use the facts for $3\times3$ matrices:
\(\det(kM)=k^{3}\det(M)\) for scalar \(k\).
\(\det(\operatorname{adj}M)=\det(M)^{2}\) (since \(\det(\operatorname{adj}M)=\det(M)^{n-1}\) and \(n=3\)).
\(\operatorname{adj}(kM)=k^{2}\operatorname{adj}M\) for \(n=3\) (because adj scales by \(k^{n-1}\)).
Start from the innermost expression: \(3A\). \[ \det(3A)=3^{3}\det(A)=27\cdot(-2)=-54. \]
Next compute \(\operatorname{adj}(3A)\). We only need its determinant: \[ \det\big(\operatorname{adj}(3A)\big)=\det(3A)^{2}=(-54)^{2}=54^{2}=2916. \]
Form \(D=-6\cdot\operatorname{adj}(3A)\). Its determinant is \[ \det(D)=(-6)^{3}\det\big(\operatorname{adj}(3A)\big)=(-216)\cdot 2916. \] Instead of multiplying numerically, factor powers of \(2\) and \(3\): \[ -216 = -2^{3}3^{3},\qquad 2916=2^{2}3^{6}. \] Thus \[ \det(D)=-2^{3+2}\,3^{3+6}=-2^{5}3^{9}. \]
Now take \(\operatorname{adj}(D)\). Its determinant is \[ \det\big(\operatorname{adj}(D)\big)=\det(D)^{2}=(2^{5}3^{9})^{2}=2^{10}3^{18}. \]
Finally consider \(3\cdot\operatorname{adj}(D)\). Its determinant is \[ \det\big(3\cdot\operatorname{adj}(D)\big)=3^{3}\det\big(\operatorname{adj}(D)\big) =3^{3}\cdot 2^{10}3^{18}=2^{10}3^{21}. \]
Compare with the given form \(2^{m+n}3^{mn}\). Hence \[ m+n=10,\qquad mn=21. \] The pair of positive integers with product \(21\) and sum \(10\) is \((m,n)=(7,3)\) (since \(7>3\)).
Therefore \[ 4m+2n=4\cdot7+2\cdot3=28+6=\boxed{34}. \]
$4m+2n=34$
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Sea water, which can be considered as a 6 molar (6 M) solution of NaCl, has a density of 2 g mL$^{-1}$. The concentration of dissolved oxygen (O$_2$) in sea water is 5.8 ppm. Then the concentration of dissolved oxygen (O$_2$) in sea water, in x $\times$ 10$^{-4}$ m. x = _______. (Nearest integer)
Given: Molar mass of NaCl is 58.5 g mol$^{-1}$Molar mass of O$_2$ is 32 g mol$^{-1}$.