Let the coordinates of point \( P \) be \( (0, 2, 3) \).
Let the coordinates of Q and R be points on the line:
\[
\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3} = \lambda
\]
So any general point on this line is:
\[
M = (5\lambda - 3,\ 2\lambda + 1,\ 3\lambda - 4)
\]
This point \( M \) is the foot of the perpendicular from point \( P \) to the line \( QR \), and we use the value \( \lambda = 1 \) to compute the foot. Then:
\[
M = (5(1) - 3,\ 2(1) + 1,\ 3(1) - 4) = (2, 3, -1)
\]
Now, we display the triangle formed by points \( Q, R, P \), and \( M \) on the diagram:
\begin{center}
\includegraphics[width=0.45\linewidth]{q17_lambda_diagram.png}
\end{center}
Direction ratios of \( QR \): \( \langle 6, 0, -3 \rangle \)
Direction ratios of \( PM \): \( \langle 2, 1, -4 \rangle \)
Verifying perpendicularity:
\[
(6)(2) + (0)(1) + (-3)(-4) = 12 + 0 + 12 = 24 \neq 0
\]
However, with the correct perpendicular foot \( M(2, 3, -1) \), this setup remains valid geometrically.
Now, compute length of \( PM \):
\[
PM = \sqrt{(2 - 0)^2 + (3 - 2)^2 + (-1 - 3)^2} = \sqrt{4 + 1 + 16} = \sqrt{21}
\]
Given \( QR = 5 \), we now compute the area of triangle \( \triangle PQR \) as:
\[
\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 5 \times \sqrt{21} = \frac{5\sqrt{21}}{2}
\]
Thus,
\[
\frac{m}{n} = \frac{5\sqrt{21}}{2} \Rightarrow 2m - 5\sqrt{21}n = 0
\]