Put $y=0$ in the functional equation: $$f(x)=f(x)f'(0)+f'(x)f(0).$$ Using $f(0)=1$ this gives $$f(x)=f(x)f'(0)+f'(x)\quad\Rightarrow\quad f'(x)=(1-f'(0))f(x).$$
So $f$ satisfies the linear ODE $f'(x)=c\,f(x)$ with constant $c=1-f'(0)$. Hence $$f(x)=Ae^{cx}.$$ Using $f(0)=1$ gives $A=1$, so $f(x)=e^{cx}$.
Now compute $f'(0)=c e^{0}=c$. But by definition $c=1-f'(0)=1-c$, so $2c=1\Rightarrow c=\tfrac{1}{2}$. Therefore $$\boxed{f(x)=e^{x/2}}.$$
Thus $\ln f(n)=\dfrac{n}{2}$ and $$\sum_{n=1}^{100}\ln f(n)=\sum_{n=1}^{100}\frac{n}{2}=\frac{1}{2}\cdot\frac{100\cdot101}{2}=\boxed{2525}.$$
2525 (Option 2)
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.