Put $y=0$ in the functional equation: $$f(x)=f(x)f'(0)+f'(x)f(0).$$ Using $f(0)=1$ this gives $$f(x)=f(x)f'(0)+f'(x)\quad\Rightarrow\quad f'(x)=(1-f'(0))f(x).$$
So $f$ satisfies the linear ODE $f'(x)=c\,f(x)$ with constant $c=1-f'(0)$. Hence $$f(x)=Ae^{cx}.$$ Using $f(0)=1$ gives $A=1$, so $f(x)=e^{cx}$.
Now compute $f'(0)=c e^{0}=c$. But by definition $c=1-f'(0)=1-c$, so $2c=1\Rightarrow c=\tfrac{1}{2}$. Therefore $$\boxed{f(x)=e^{x/2}}.$$
Thus $\ln f(n)=\dfrac{n}{2}$ and $$\sum_{n=1}^{100}\ln f(n)=\sum_{n=1}^{100}\frac{n}{2}=\frac{1}{2}\cdot\frac{100\cdot101}{2}=\boxed{2525}.$$
2525 (Option 2)
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
