Put $y=0$ in the functional equation: $$f(x)=f(x)f'(0)+f'(x)f(0).$$ Using $f(0)=1$ this gives $$f(x)=f(x)f'(0)+f'(x)\quad\Rightarrow\quad f'(x)=(1-f'(0))f(x).$$
So $f$ satisfies the linear ODE $f'(x)=c\,f(x)$ with constant $c=1-f'(0)$. Hence $$f(x)=Ae^{cx}.$$ Using $f(0)=1$ gives $A=1$, so $f(x)=e^{cx}$.
Now compute $f'(0)=c e^{0}=c$. But by definition $c=1-f'(0)=1-c$, so $2c=1\Rightarrow c=\tfrac{1}{2}$. Therefore $$\boxed{f(x)=e^{x/2}}.$$
Thus $\ln f(n)=\dfrac{n}{2}$ and $$\sum_{n=1}^{100}\ln f(n)=\sum_{n=1}^{100}\frac{n}{2}=\frac{1}{2}\cdot\frac{100\cdot101}{2}=\boxed{2525}.$$
2525 (Option 2)
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to