The given expressions for \( \omega_1 \) and \( \omega_2 \) are:
\[
\omega_1 = (8 \sin \theta + 7 \cos \theta) + i(\sin \theta + 4 \cos \theta)
\]
\[
\omega_2 = (1 \sin \theta + 4 \cos \theta) + i(8 \sin \theta + 7 \cos \theta)
\]
Now, we calculate the product \( \omega_1 \omega_2 \):
\[
\omega_1 \omega_2 = (8 \sin \theta + 7 \cos \theta)(\sin \theta + 4 \cos \theta) + i[(\sin \theta + 4 \cos \theta)(1 \sin \theta + 4 \cos \theta)]
\]
The product simplifies to:
\[
\omega_1 \omega_2 = 65 + 60 \sin^2 \theta
\]
Thus, the maximum and minimum values of \( \alpha + \beta \) are 125 and 5 respectively, and their sum is 130.
Thus, the correct answer is \( 130 \).