We are given the vectors \( \mathbf{b} = \lambda \hat{i} + 4 \hat{k} \) and \( \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \), and we are asked to find the area of the parallelogram formed by the vectors \( \mathbf{b} \) and \( \vec{c} \), where \( \vec{c} \) is the projection of \( \mathbf{b} \) onto \( \vec{a} \).
The projection of \( \mathbf{b} \) onto \( \vec{a} \), denoted by \( \vec{c} \), is given by the formula:
\[ \vec{c} = \text{proj}_{\vec{a}} \mathbf{b} = \frac{\mathbf{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \]
We first compute the dot product \( \mathbf{b} \cdot \vec{a} \):
\[ \mathbf{b} = \lambda \hat{i} + 4 \hat{k}, \quad \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \]
The dot product is:
\[ \mathbf{b} \cdot \vec{a} = \lambda(1) + 0(2) + 4(2) = \lambda + 8 \]
The magnitude squared of \( \vec{a} \) is:
\[ |\vec{a}|^2 = 1^2 + 2^2 + 2^2 = 1 + 4 + 4 = 9 \]
Using the formula for the projection, we get:
\[ \vec{c} = \frac{\lambda + 8}{9} \vec{a} = \frac{\lambda + 8}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) \]
We are given that \( |\vec{a} + \vec{c}| = 7 \). Let’s calculate the magnitude of \( \vec{a} + \vec{c} \):
\[ \vec{a} + \vec{c} = \hat{i} + 2 \hat{j} + 2 \hat{k} + \frac{\lambda + 8}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) \]
Simplifying the expression for \( \vec{a} + \vec{c} \), we get:
\[ \vec{a} + \vec{c} = \left( \frac{\lambda + 17}{9} \right) \hat{i} + \left( \frac{2\lambda + 34}{9} \right) \hat{j} + \left( \frac{2\lambda + 34}{9} \right) \hat{k} \]
The magnitude of \( \vec{a} + \vec{c} \) is:
\[ |\vec{a} + \vec{c}| = \sqrt{\left( \frac{\lambda + 17}{9} \right)^2 + \left( \frac{2\lambda + 34}{9} \right)^2 + \left( \frac{2\lambda + 34}{9} \right)^2} \]
We are given \( |\vec{a} + \vec{c}| = 7 \), so solving the equation gives \( \lambda = 2 \).
The area of the parallelogram formed by vectors \( \vec{b} \) and \( \vec{c} \) is given by the magnitude of their cross product:
\[ \text{Area} = |\vec{b} \times \vec{c}| \]
After calculating the cross product, we find that the area of the parallelogram is:
\[ \boxed{16} \]
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to: