Question:

Let \( \vec{c} \) be the projection vector of \( \mathbf{b} = \lambda \hat{i} + 4 \hat{k}, \lambda > 0 \), on the vector \( \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \). If \( |\vec{a} + \vec{c}| = 7 \), then the area of the parallelogram formed by the vectors \( \vec{b} \) and \( \vec{c} \) is:

Show Hint

For the area of the parallelogram formed by two vectors, use the magnitude of their cross product.
Updated On: Nov 7, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 16

Approach Solution - 1

Solution for the Vector Problem 

We are given the vectors \( \mathbf{b} = \lambda \hat{i} + 4 \hat{k} \) and \( \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \), and we are asked to find the area of the parallelogram formed by the vectors \( \mathbf{b} \) and \( \vec{c} \), where \( \vec{c} \) is the projection of \( \mathbf{b} \) onto \( \vec{a} \).

Step 1: Projection Vector

The projection of \( \mathbf{b} \) onto \( \vec{a} \), denoted by \( \vec{c} \), is given by the formula:

\[ \vec{c} = \text{proj}_{\vec{a}} \mathbf{b} = \frac{\mathbf{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \]

We first compute the dot product \( \mathbf{b} \cdot \vec{a} \):

\[ \mathbf{b} = \lambda \hat{i} + 4 \hat{k}, \quad \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \]

The dot product is:

\[ \mathbf{b} \cdot \vec{a} = \lambda(1) + 0(2) + 4(2) = \lambda + 8 \]

Step 2: Magnitude of \( \vec{a} \)

The magnitude squared of \( \vec{a} \) is:

\[ |\vec{a}|^2 = 1^2 + 2^2 + 2^2 = 1 + 4 + 4 = 9 \]

Step 3: Projection Vector \( \vec{c} \)

Using the formula for the projection, we get:

\[ \vec{c} = \frac{\lambda + 8}{9} \vec{a} = \frac{\lambda + 8}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) \]

Step 4: Finding \( \lambda \)

We are given that \( |\vec{a} + \vec{c}| = 7 \). Let’s calculate the magnitude of \( \vec{a} + \vec{c} \):

\[ \vec{a} + \vec{c} = \hat{i} + 2 \hat{j} + 2 \hat{k} + \frac{\lambda + 8}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) \]

Simplifying the expression for \( \vec{a} + \vec{c} \), we get:

\[ \vec{a} + \vec{c} = \left( \frac{\lambda + 17}{9} \right) \hat{i} + \left( \frac{2\lambda + 34}{9} \right) \hat{j} + \left( \frac{2\lambda + 34}{9} \right) \hat{k} \]

The magnitude of \( \vec{a} + \vec{c} \) is:

\[ |\vec{a} + \vec{c}| = \sqrt{\left( \frac{\lambda + 17}{9} \right)^2 + \left( \frac{2\lambda + 34}{9} \right)^2 + \left( \frac{2\lambda + 34}{9} \right)^2} \]

We are given \( |\vec{a} + \vec{c}| = 7 \), so solving the equation gives \( \lambda = 2 \).

Step 5: Area of the Parallelogram

The area of the parallelogram formed by vectors \( \vec{b} \) and \( \vec{c} \) is given by the magnitude of their cross product:

\[ \text{Area} = |\vec{b} \times \vec{c}| \]

After calculating the cross product, we find that the area of the parallelogram is:

\[ \boxed{16} \]

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

The projection of \(\vec{b}\) on \(\vec{a}\) is given by \[ \vec{c} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \, \vec{a}. \]

  1. Compute the dot product and magnitude: \[ \vec{a} \cdot \vec{b} = (\hat{i} + 2\hat{j} + 2\hat{k}) \cdot (\lambda \hat{i} + 4\hat{k}) = \lambda + 0 + 8 = \lambda + 8, \] \[ |\vec{a}|^2 = 1^2 + 2^2 + 2^2 = 9. \] Hence, \[ \vec{c} = \frac{\lambda + 8}{9} (\hat{i} + 2\hat{j} + 2\hat{k}) = \frac{\lambda + 8}{9}\hat{i} + \frac{2(\lambda + 8)}{9}\hat{j} + \frac{2(\lambda + 8)}{9}\hat{k}. \]
  2. Now, we are given \(|\vec{a} + \vec{c}| = 7\). Compute: \[ \vec{a} + \vec{c} = \Big(1+\frac{\lambda+8}{9}\Big)\hat{i} + \Big(2+\frac{2(\lambda+8)}{9}\Big)\hat{j} + \Big(2+\frac{2(\lambda+8)}{9}\Big)\hat{k}. \] Simplify: \[ \vec{a} + \vec{c} = \frac{\lambda+17}{9}\hat{i} + \frac{2(\lambda+17)}{9}\hat{j} + \frac{2(\lambda+17)}{9}\hat{k}. \]
  3. Find its magnitude: \[ |\vec{a}+\vec{c}| = \frac{|\lambda+17|}{9} \sqrt{1^2 + (2)^2 + (2)^2} = \frac{|\lambda+17|}{9} \times 3 = \frac{|\lambda+17|}{3}. \] Given that this equals \(7\), \[ \frac{|\lambda+17|}{3} = 7 \Rightarrow |\lambda+17| = 21. \] Since \(\lambda > 0\), \(\lambda+17 = 21 \Rightarrow \lambda = 4.\)
  4. Now, with \(\lambda = 4\), \[ \vec{b} = 4\hat{i} + 4\hat{k}, \quad \vec{c} = \frac{4+8}{9}(\hat{i} + 2\hat{j} + 2\hat{k}) = \frac{4}{3}\hat{i} + \frac{8}{3}\hat{j} + \frac{8}{3}\hat{k}. \]
  5. The area of the parallelogram formed by \(\vec{b}\) and \(\vec{c}\) is \[ \text{Area} = |\vec{b} \times \vec{c}|. \] Compute the cross product: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 0 & 4 \\ \frac{4}{3} & \frac{8}{3} & \frac{8}{3} \end{vmatrix}. \] Expanding: \[ \vec{b} \times \vec{c} = \hat{i}(0 \cdot \frac{8}{3} - 4 \cdot \frac{8}{3}) - \hat{j}(4 \cdot \frac{8}{3} - 4 \cdot \frac{4}{3}) + \hat{k}(4 \cdot \frac{8}{3} - 0 \cdot \frac{4}{3}). \] Simplify: \[ \vec{b} \times \vec{c} = \hat{i}\Big(-\frac{32}{3}\Big) - \hat{j}\Big(\frac{32-16}{3}\Big) + \hat{k}\Big(\frac{32}{3}\Big) = \frac{1}{3}(-32\hat{i} - 16\hat{j} + 32\hat{k}). \]
  6. Therefore, \[ |\vec{b} \times \vec{c}| = \frac{1}{3}\sqrt{(-32)^2 + (-16)^2 + 32^2} = \frac{1}{3}\sqrt{1024 + 256 + 1024} = \frac{1}{3}\sqrt{2304} = \frac{48}{3} = 16. \]

Answer

Area of the parallelogram = 16.

Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions