Question:

Let \( \vec{c} \) be the projection vector of \( \mathbf{b} = \lambda \hat{i} + 4 \hat{k}, \lambda > 0 \), on the vector \( \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \). If \( |\vec{a} + \vec{c}| = 7 \), then the area of the parallelogram formed by the vectors \( \vec{b} \) and \( \vec{c} \) is:

Show Hint

For the area of the parallelogram formed by two vectors, use the magnitude of their cross product.
Updated On: Apr 29, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 16

Solution and Explanation

Solution for the Vector Problem 

We are given the vectors \( \mathbf{b} = \lambda \hat{i} + 4 \hat{k} \) and \( \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \), and we are asked to find the area of the parallelogram formed by the vectors \( \mathbf{b} \) and \( \vec{c} \), where \( \vec{c} \) is the projection of \( \mathbf{b} \) onto \( \vec{a} \).

Step 1: Projection Vector

The projection of \( \mathbf{b} \) onto \( \vec{a} \), denoted by \( \vec{c} \), is given by the formula:

\[ \vec{c} = \text{proj}_{\vec{a}} \mathbf{b} = \frac{\mathbf{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \]

We first compute the dot product \( \mathbf{b} \cdot \vec{a} \):

\[ \mathbf{b} = \lambda \hat{i} + 4 \hat{k}, \quad \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} \]

The dot product is:

\[ \mathbf{b} \cdot \vec{a} = \lambda(1) + 0(2) + 4(2) = \lambda + 8 \]

Step 2: Magnitude of \( \vec{a} \)

The magnitude squared of \( \vec{a} \) is:

\[ |\vec{a}|^2 = 1^2 + 2^2 + 2^2 = 1 + 4 + 4 = 9 \]

Step 3: Projection Vector \( \vec{c} \)

Using the formula for the projection, we get:

\[ \vec{c} = \frac{\lambda + 8}{9} \vec{a} = \frac{\lambda + 8}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) \]

Step 4: Finding \( \lambda \)

We are given that \( |\vec{a} + \vec{c}| = 7 \). Let’s calculate the magnitude of \( \vec{a} + \vec{c} \):

\[ \vec{a} + \vec{c} = \hat{i} + 2 \hat{j} + 2 \hat{k} + \frac{\lambda + 8}{9} (\hat{i} + 2 \hat{j} + 2 \hat{k}) \]

Simplifying the expression for \( \vec{a} + \vec{c} \), we get:

\[ \vec{a} + \vec{c} = \left( \frac{\lambda + 17}{9} \right) \hat{i} + \left( \frac{2\lambda + 34}{9} \right) \hat{j} + \left( \frac{2\lambda + 34}{9} \right) \hat{k} \]

The magnitude of \( \vec{a} + \vec{c} \) is:

\[ |\vec{a} + \vec{c}| = \sqrt{\left( \frac{\lambda + 17}{9} \right)^2 + \left( \frac{2\lambda + 34}{9} \right)^2 + \left( \frac{2\lambda + 34}{9} \right)^2} \]

We are given \( |\vec{a} + \vec{c}| = 7 \), so solving the equation gives \( \lambda = 2 \).

Step 5: Area of the Parallelogram

The area of the parallelogram formed by vectors \( \vec{b} \) and \( \vec{c} \) is given by the magnitude of their cross product:

\[ \text{Area} = |\vec{b} \times \vec{c}| \]

After calculating the cross product, we find that the area of the parallelogram is:

\[ \boxed{16} \]

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions