\( 3(1 + \sqrt{2}) \)
\( 3(6 + \sqrt{2}) \)
9
We use geometric properties of the ellipse and maximum/minimum dot product identities.
Sum of maximum and minimum values of \( \vec{SP} \cdot \vec{S'P} \) gives: \[ \min + \max = 27 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: