The foci lie on the vertical line \(x=1\), so the transverse axis is vertical. Put the centre at the midpoint of the foci: \[ \text{centre }=(1,\tfrac{14+(-12)}{2})=(1,1). \]
Distance between foci \(=26\), so \(2c=26\Rightarrow c=13\). For a vertical transverse hyperbola with centre \((1,1)\) we use the form \[ \frac{(y-1)^2}{a^2}-\frac{(x-1)^2}{b^2}=1, \] with \(c^2=a^2+b^2\).
The point \((1,6)\) lies on the hyperbola. Substitute \(x=1\), \(y=6\): \[ \frac{(6-1)^2}{a^2}-0=1 \quad\Rightarrow\quad \frac{25}{a^2}=1 \Rightarrow a^2=25\ (a=5). \]
Now \(b^2=c^2-a^2=13^2-5^2=169-25=144\).
For the hyperbola \(\dfrac{(y-1)^2}{a^2}-\dfrac{(x-1)^2}{b^2}=1\), the length of each latus-rectum is \[ \text{latus-rectum}=\frac{2b^2}{a}. \] Substitute \(b^2=144,\ a=5\): \[ \text{length}=\frac{2\cdot144}{5}=\frac{288}{5}. \]
Answer
\(\dfrac{288}{5}\). (Option 3)
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to