The foci lie on the vertical line \(x=1\), so the transverse axis is vertical. Put the centre at the midpoint of the foci: \[ \text{centre }=(1,\tfrac{14+(-12)}{2})=(1,1). \]
Distance between foci \(=26\), so \(2c=26\Rightarrow c=13\). For a vertical transverse hyperbola with centre \((1,1)\) we use the form \[ \frac{(y-1)^2}{a^2}-\frac{(x-1)^2}{b^2}=1, \] with \(c^2=a^2+b^2\).
The point \((1,6)\) lies on the hyperbola. Substitute \(x=1\), \(y=6\): \[ \frac{(6-1)^2}{a^2}-0=1 \quad\Rightarrow\quad \frac{25}{a^2}=1 \Rightarrow a^2=25\ (a=5). \]
Now \(b^2=c^2-a^2=13^2-5^2=169-25=144\).
For the hyperbola \(\dfrac{(y-1)^2}{a^2}-\dfrac{(x-1)^2}{b^2}=1\), the length of each latus-rectum is \[ \text{latus-rectum}=\frac{2b^2}{a}. \] Substitute \(b^2=144,\ a=5\): \[ \text{length}=\frac{2\cdot144}{5}=\frac{288}{5}. \]
Answer
\(\dfrac{288}{5}\). (Option 3)
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: