The foci lie on the vertical line \(x=1\), so the transverse axis is vertical. Put the centre at the midpoint of the foci: \[ \text{centre }=(1,\tfrac{14+(-12)}{2})=(1,1). \]
Distance between foci \(=26\), so \(2c=26\Rightarrow c=13\). For a vertical transverse hyperbola with centre \((1,1)\) we use the form \[ \frac{(y-1)^2}{a^2}-\frac{(x-1)^2}{b^2}=1, \] with \(c^2=a^2+b^2\).
The point \((1,6)\) lies on the hyperbola. Substitute \(x=1\), \(y=6\): \[ \frac{(6-1)^2}{a^2}-0=1 \quad\Rightarrow\quad \frac{25}{a^2}=1 \Rightarrow a^2=25\ (a=5). \]
Now \(b^2=c^2-a^2=13^2-5^2=169-25=144\).
For the hyperbola \(\dfrac{(y-1)^2}{a^2}-\dfrac{(x-1)^2}{b^2}=1\), the length of each latus-rectum is \[ \text{latus-rectum}=\frac{2b^2}{a}. \] Substitute \(b^2=144,\ a=5\): \[ \text{length}=\frac{2\cdot144}{5}=\frac{288}{5}. \]
Answer
\(\dfrac{288}{5}\). (Option 3)
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to: