Let the sum of the series be \( S \), where the general term is \( T_n \):
\[
T_n = \cot^{-1} \left( \frac{4n}{2n^2 + 3} \right)
\]
This can be simplified as:
\[
T_n = \cot^{-1} \left( \frac{n + \frac{1}{2}}{1 + \left( n + \frac{1}{2} \right)^2} \right)
\]
Now the series becomes:
\[
S = T_1 + T_2 + \dots = \cot^{-1} \left( n + \frac{1}{2} \right) - \cot^{-1} \left( n - \frac{1}{2} \right)
\]
Therefore, the sum of the infinite series is:
\[
S = \frac{\pi}{2} - \tan^{-1} \left( \frac{1}{2} \right)
\]
Thus, the correct answer is \( \frac{\pi}{2} - \tan^{-1} \left( \frac{1}{2} \right) \).