Three distinct numbers are selected randomly from the set $ \{1, 2, 3, ..., 40\} $. If the probability that the selected numbers are in an increasing G.P. is $ \frac{m}{n} $, where $ \gcd(m, n) = 1 $, then $ m + n $ is equal to:
Let the numbers selected be \( a, ar, ar^2 \), where \( a \) and \( r \) are in \( \mathbb{N} \).
We evaluate for different values of \( r \): For \( r = 2 \), we calculate possible values of \( a \), and similarly for other values of \( r \).
After summing the probabilities for each possible case, we find: \[ \text{Total} = 28\]
Thus, \(\ m+n = 13. \)
Four students of class XII are given a problem to solve independently. Their respective chances of solving the problem are: \[ \frac{1}{2},\quad \frac{1}{3},\quad \frac{2}{3},\quad \frac{1}{5} \] Find the probability that at most one of them will solve the problem.
Two persons are competing for a position on the Managing Committee of an organisation. The probabilities that the first and the second person will be appointed are 0.5 and 0.6, respectively. Also, if the first person gets appointed, then the probability of introducing a waste treatment plant is 0.7, and the corresponding probability is 0.4 if the second person gets appointed.
Based on the above information, answer the following
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).