Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
We are given a 3x3 matrix \( A \) with \( \det(A) = -4 \). We are also given the matrix \( A + I \) and an equation involving the determinant of a related matrix. We need to find the value of \( m + n \).
This problem uses several properties of determinants and adjugate matrices for a square matrix \( M \) of order \( p \):
Step 1: Find the value of the constant \( a \).
We are given the matrix \( A + I \):
\[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \]We can find the matrix \( A \) by subtracting the identity matrix \( I \):
\[ A = (A + I) - I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & 1 \\ 2 & 0 & 0 \\ a & 1 & 1 \end{bmatrix} \]Now, we compute the determinant of \( A \) and set it equal to the given value, -4.
\[ \det(A) = \begin{vmatrix} 0 & a & 1 \\ 2 & 0 & 0 \\ a & 1 & 1 \end{vmatrix} \]Expanding along the second row (which contains two zeros) simplifies the calculation:
\[ \det(A) = -2 \begin{vmatrix} a & 1 \\ 1 & 1 \end{vmatrix} = -2(a \cdot 1 - 1 \cdot 1) = -2(a - 1) \]We are given that \( \det(A) = -4 \), so:
\[ -2(a - 1) = -4 \implies a - 1 = 2 \implies a = 3 \]Step 2: Simplify the expression \( \det((a + 1) \text{adj}((a - 1)A)) \).
Let's denote the expression inside the determinant as \( M \):
\[ M = (a + 1) \text{adj}((a - 1)A) \]This is a scalar \( (a+1) \) multiplied by a matrix. Using the property \( \det(kX) = k^p \det(X) \) with \( p=3 \):
\[ \det(M) = (a + 1)^3 \det(\text{adj}((a - 1)A)) \]Next, we use the property \( \det(\text{adj}(X)) = (\det(X))^{p-1} \) with \( p=3 \):
\[ \det(\text{adj}((a - 1)A)) = (\det((a - 1)A))^2 \]Now, we use the property \( \det(kX) = k^p \det(X) \) again:
\[ \det((a - 1)A) = (a - 1)^3 \det(A) \]Combining these results:
\[ \det(M) = (a + 1)^3 \left( (a - 1)^3 \det(A) \right)^2 = (a + 1)^3 (a - 1)^6 (\det(A))^2 \]Step 3: Substitute the known values into the simplified expression.
We found \( a = 3 \) and we are given \( \det(A) = -4 \).
\[ \det(M) = (3 + 1)^3 (3 - 1)^6 (-4)^2 \] \[ = (4)^3 (2)^6 (-4)^2 = (2^2)^3 (2^6) (-(2^2))^2 = (2^6)(2^6)(2^4) \] \[ = 2^{6+6+4} = 2^{16} \]We are given that the value of the determinant is \( 2^m 3^n \).
\[ 2^{16} = 2^m 3^n \]By comparing the powers of the prime factors, we get:
\[ m = 16 \quad \text{and} \quad n = 0 \]The problem asks for the value of \( m + n \).
\[ m + n = 16 + 0 = 16 \]The value of \( m+n \) is 16.
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to