The integral \( \int_0^1 (1 + x)^{11} \, dx \) expands as:
\[
\int_0^1 (1 + x)^{11} \, dx = C_0 + C_1 x^2 + C_2 x^3 + \dots
\]
Evaluating this, we get:
\[
\frac{2^{12} - 1}{12} = C_0 + C_1 + C_2 + C_3 + \dots
\]
Similarly, the integral from \( -1 \) to \( 0 \) is:
\[
\int_{-1}^0 (1 + x)^{11} \, dx = C_0 - C_1 + C_2 - C_3 + \dots
\]
From this, we can calculate:
\[
\frac{2^{12} - 2}{12} = 2 \left( C_1 + C_3 + C_5 + \dots \right)
\]
Thus:
\[
C_1 + C_3 + C_5 + \dots = \frac{2^{11} - 1}{12} = \frac{2047}{12}
\]
Hence, \( m - n = 2035 \).