Let \[ R = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix} \text{ be a non-zero } 3 \times 3 \text{ matrix, where} \]
\[ x = \sin \theta, \quad y = \sin \left( \theta + \frac{2\pi}{3} \right), \quad z = \sin \left( \theta + \frac{4\pi}{3} \right) \]
and \( \theta \neq 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi \). For a square matrix \( M \), let \( \text{trace}(M) \) denote the sum of all the diagonal entries of \( M \). Then, among the statements:
Which of the following is true?
A fair die is thrown until the number 2 appears. What is the probability that 2 appears in an even number of throws?