To find d1, the shortest distance between the lines L1 and L2:
L1 : \( \frac{x + 1}{2} = \frac{y - 1}{-12} = \frac{z}{1} \), L2 : \( \frac{x - 1}{-7} = \frac{y + 8}{2} = \frac{z - 4}{5} \)
Using the formula for the distance between two skew lines \( d = \frac{|(\vec{a_2} - \vec{a_1}) \times (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \), we calculate:
\( d_1 = 2 \)
Similarly, to find d2 for lines L3 and L4:
L3 : \( \frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z - 6}{-3} \), L4 : \( \frac{x + 2}{1} = \frac{y + 2}{1} = \frac{z - 1}{6} \)
we get: \( d_2 = \frac{12}{\sqrt{3}} \)
Finally,
\( \frac{32 \sqrt{3} d_1}{d_2} = \frac{32 \sqrt{3} \times 2}{\frac{12}{\sqrt{3}}} = 16 \)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).