To find d1, the shortest distance between the lines L1 and L2:
L1 : \( \frac{x + 1}{2} = \frac{y - 1}{-12} = \frac{z}{1} \), L2 : \( \frac{x - 1}{-7} = \frac{y + 8}{2} = \frac{z - 4}{5} \)
Using the formula for the distance between two skew lines \( d = \frac{|(\vec{a_2} - \vec{a_1}) \times (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \), we calculate:
\( d_1 = 2 \)
Similarly, to find d2 for lines L3 and L4:
L3 : \( \frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z - 6}{-3} \), L4 : \( \frac{x + 2}{1} = \frac{y + 2}{1} = \frac{z - 1}{6} \)
we get: \( d_2 = \frac{12}{\sqrt{3}} \)
Finally,
\( \frac{32 \sqrt{3} d_1}{d_2} = \frac{32 \sqrt{3} \times 2}{\frac{12}{\sqrt{3}}} = 16 \)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: