To find d1, the shortest distance between the lines L1 and L2:
L1 : \( \frac{x + 1}{2} = \frac{y - 1}{-12} = \frac{z}{1} \), L2 : \( \frac{x - 1}{-7} = \frac{y + 8}{2} = \frac{z - 4}{5} \)
Using the formula for the distance between two skew lines \( d = \frac{|(\vec{a_2} - \vec{a_1}) \times (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \), we calculate:
\( d_1 = 2 \)
Similarly, to find d2 for lines L3 and L4:
L3 : \( \frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z - 6}{-3} \), L4 : \( \frac{x + 2}{1} = \frac{y + 2}{1} = \frac{z - 1}{6} \)
we get: \( d_2 = \frac{12}{\sqrt{3}} \)
Finally,
\( \frac{32 \sqrt{3} d_1}{d_2} = \frac{32 \sqrt{3} \times 2}{\frac{12}{\sqrt{3}}} = 16 \)
The problem asks for the value of the expression \( \frac{32\sqrt{3}d_1}{d_2} \), where \(d_1\) and \(d_2\) are the shortest distances between two specified pairs of skew lines.
The shortest distance between two skew lines given by the vector equations \( \vec{r} = \vec{a}_1 + \lambda \vec{b}_1 \) and \( \vec{r} = \vec{a}_2 + \mu \vec{b}_2 \) is calculated using the formula:
\[ d = \frac{\left| (\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) \right|}{\left| \vec{b}_1 \times \vec{b}_2 \right|} \]We will first convert the Cartesian equations of the lines into standard form to identify the point vectors (\(\vec{a}\)) and direction vectors (\(\vec{b}\)) for each line, and then apply this formula to find \(d_1\) and \(d_2\).
Step 1: Convert the equations for the first pair of lines to standard form.
Line 1: \( x + 1 = 2y = -12z \)
To put this in the form \( \frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c} \), we divide by the LCM of the coefficients' denominators (which is 12):
\[ \frac{x - (-1)}{12} = \frac{2y}{12} = \frac{-12z}{12} \implies \frac{x - (-1)}{12} = \frac{y - 0}{6} = \frac{z - 0}{-1} \]Line 2: \( x = y + 2 = 6z - 6 \)
We rewrite this as:
\[ \frac{x - 0}{6} = \frac{y - (-2)}{6} = \frac{6(z - 1)}{6} \implies \frac{x - 0}{6} = \frac{y - (-2)}{6} = \frac{z - 1}{1} \]Step 2: Identify the point and direction vectors for the first pair of lines.
\( \vec{a}_1 = -\hat{i} + 0\hat{j} + 0\hat{k} \), \( \vec{b}_1 = 12\hat{i} + 6\hat{j} - \hat{k} \)
\( \vec{a}_2 = 0\hat{i} - 2\hat{j} + \hat{k} \), \( \vec{b}_2 = 6\hat{i} + 6\hat{j} + \hat{k} \)
Step 3: Compute the necessary vector products.
\[ \vec{a}_2 - \vec{a}_1 = (0 - (-1))\hat{i} + (-2 - 0)\hat{j} + (1 - 0)\hat{k} = \hat{i} - 2\hat{j} + \hat{k} \] \[ \vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 12 & 6 & -1 \\ 6 & 6 & 1 \end{vmatrix} = \hat{i}(6 - (-6)) - \hat{j}(12 - (-6)) + \hat{k}(72 - 36) = 12\hat{i} - 18\hat{j} + 36\hat{k} \]Step 4: Calculate \(d_1\).
Numerator: \( \left| (\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) \right| = \left| (1)(12) + (-2)(-18) + (1)(36) \right| = \left| 12 + 36 + 36 \right| = 84 \)
Denominator: \( \left| \vec{b}_1 \times \vec{b}_2 \right| = \sqrt{12^2 + (-18)^2 + 36^2} = \sqrt{144 + 324 + 1296} = \sqrt{1764} = 42 \)
\[ d_1 = \frac{84}{42} = 2 \]Step 5: Identify the point and direction vectors for the second pair of lines.
Line 3: \( \frac{x-1}{2} = \frac{y+8}{-7} = \frac{z-4}{5} \)
Line 4: \( \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-6}{-3} \)
\( \vec{a}_3 = \hat{i} - 8\hat{j} + 4\hat{k} \), \( \vec{b}_3 = 2\hat{i} - 7\hat{j} + 5\hat{k} \)
\( \vec{a}_4 = \hat{i} + 2\hat{j} + 6\hat{k} \), \( \vec{b}_4 = 2\hat{i} + \hat{j} - 3\hat{k} \)
Step 6: Compute the necessary vector products for the second pair.
\[ \vec{a}_4 - \vec{a}_3 = (1 - 1)\hat{i} + (2 - (-8))\hat{j} + (6 - 4)\hat{k} = 0\hat{i} + 10\hat{j} + 2\hat{k} \] \[ \vec{b}_3 \times \vec{b}_4 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{vmatrix} = \hat{i}(21 - 5) - \hat{j}(-6 - 10) + \hat{k}(2 - (-14)) = 16\hat{i} + 16\hat{j} + 16\hat{k} \]Step 7: Calculate \(d_2\).
Numerator: \( \left| (\vec{a}_4 - \vec{a}_3) \cdot (\vec{b}_3 \times \vec{b}_4) \right| = \left| (0)(16) + (10)(16) + (2)(16) \right| = \left| 160 + 32 \right| = 192 \)
Denominator: \( \left| \vec{b}_3 \times \vec{b}_4 \right| = \sqrt{16^2 + 16^2 + 16^2} = \sqrt{3 \times 16^2} = 16\sqrt{3} \)
\[ d_2 = \frac{192}{16\sqrt{3}} = \frac{12}{\sqrt{3}} = \frac{12\sqrt{3}}{3} = 4\sqrt{3} \]Step 8: Substitute the values of \(d_1\) and \(d_2\) into the final expression.
We need to find the value of \( \frac{32\sqrt{3}d_1}{d_2} \).
We found \( d_1 = 2 \) and \( d_2 = 4\sqrt{3} \).
\[ \frac{32\sqrt{3} \times 2}{4\sqrt{3}} = \frac{64\sqrt{3}}{4\sqrt{3}} \]The \( \sqrt{3} \) terms cancel out.
\[ \frac{64}{4} = 16 \]The value of the expression is 16.
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 