To find d1, the shortest distance between the lines L1 and L2:
L1 : \( \frac{x + 1}{2} = \frac{y - 1}{-12} = \frac{z}{1} \), L2 : \( \frac{x - 1}{-7} = \frac{y + 8}{2} = \frac{z - 4}{5} \)
Using the formula for the distance between two skew lines \( d = \frac{|(\vec{a_2} - \vec{a_1}) \times (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} \), we calculate:
\( d_1 = 2 \)
Similarly, to find d2 for lines L3 and L4:
L3 : \( \frac{x - 1}{2} = \frac{y - 2}{1} = \frac{z - 6}{-3} \), L4 : \( \frac{x + 2}{1} = \frac{y + 2}{1} = \frac{z - 1}{6} \)
we get: \( d_2 = \frac{12}{\sqrt{3}} \)
Finally,
\( \frac{32 \sqrt{3} d_1}{d_2} = \frac{32 \sqrt{3} \times 2}{\frac{12}{\sqrt{3}}} = 16 \)