Question:

If f(x)=2cos4x2sin4x3+sin22x3+2cos4x2sin4xsin22x2cos4x3+2sin4xsin22x f(x) = \begin{vmatrix} 2 \cos^4 x & 2 \sin^4 x & 3 + \sin^2 2x \\ 3 + 2 \cos^4 x & 2 \sin^4 x & \sin^2 2x \\ 2 \cos^4 x & 3 + 2 \sin^4 x & \sin^2 2x \end{vmatrix} then 15f(0) \frac{1}{5} f'(0) is equal to

Updated On: Mar 31, 2025
  • 0
  • 1
  • 2
  • 6
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

By simplifying the determinant using row operations:

R2R2R1 R_2 \rightarrow R_2 - R_1 ,    R3R3R1 R_3 \rightarrow R_3 - R_1

we find that f(x) f(x) is constant. Therefore, f(x)=0 f'(x) = 0 .

Thus,

15f(0)=0 \frac{1}{5} f'(0) = 0

Was this answer helpful?
1
0

Top Questions on Determinants

View More Questions