By simplifying the determinant using row operations:
\( R_2 \rightarrow R_2 - R_1 \), \( R_3 \rightarrow R_3 - R_1 \)
we find that \( f(x) \) is constant. Therefore, \( f'(x) = 0 \).
Thus,
\[ \frac{1}{5} f'(0) = 0 \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: