Solution: Rewrite the limit as follows:
\[ \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{e^{x^2} - 1} = \lim_{x \to 0} \left( \frac{\int_0^x f(t) \, dt}{x} \times \frac{x}{e^{x^2} - 1} \right) \]
Evaluate each part separately:
For the first part, use L'Hôpital's Rule:
\[ \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{x} = \lim_{x \to 0} f(x) = f(0) = \frac{1}{2} \]
For the second part, apply the Taylor series expansion \( e^{x^2} \approx 1 + x^2 \) near \( x = 0 \):
\[ \lim_{x \to 0} \frac{x}{e^{x^2} - 1} = \lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} \frac{1}{x} = 1 \]
So, \( \alpha = \frac{1}{2} \). Then,
\[ 8\alpha^2 = 8 \times \left( \frac{1}{2} \right)^2 = 2 \]
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?
