To solve the problem, we need to evaluate the following limit:
\[\lim_{x \to 0} \frac{\int_{0}^{x} f(t) \, dt}{e^{x^2} - 1} = \alpha\]Given that \(f(0) = \frac{1}{2}\) and \(f(x)\) is differentiable, we will use L'Hôpital's Rule. L'Hôpital's Rule is applicable since both the numerator and the denominator approach 0 as \(x \to 0\).
First, we differentiate the numerator and the denominator with respect to \(x\):
Using L'Hôpital's Rule, we have:
\[\lim_{x \to 0} \frac{f(x)}{2x e^{x^2}} = \alpha\]Substituting \(f(0) = \frac{1}{2}\), we focus on the expression at \(x = 0\):
\[\lim_{x \to 0} \frac{f(x)}{2x e^{x^2}} = \lim_{x \to 0} \frac{\frac{1}{2} + \frac{d}{dx}(f(x) - \frac{1}{2})}{2x e^{x^2}}\]Notice that the higher order terms vanish faster than \(x\), hence:
\[\lim_{x \to 0} \frac{\frac{1}{2}}{2x} = \frac{1}{4}\]Thus, \(\alpha = \frac{1}{4}\).
Next, we find \(8\alpha^{2}\):
\[8 \alpha^2 = 8 \left(\frac{1}{4}\right)^2 = 8 \times \frac{1}{16} = \frac{1}{2} \times 2 = 2\]Hence, the correct answer is 2.
Rewrite the limit as follows:
\[ \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{e^{x^2} - 1} = \lim_{x \to 0} \left( \frac{\int_0^x f(t) \, dt}{x} \times \frac{x}{e^{x^2} - 1} \right) \]
Evaluate each part separately:
For the first part, use L'Hôpital's Rule:
\[ \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{x} = \lim_{x \to 0} f(x) = f(0) = \frac{1}{2} \]
For the second part, apply the Taylor series expansion \( e^{x^2} \approx 1 + x^2 \) near \( x = 0 \):
\[ \lim_{x \to 0} \frac{x}{e^{x^2} - 1} = \lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} \frac{1}{x} = 1 \]
So, \( \alpha = \frac{1}{2} \). Then,
\[ 8\alpha^2 = 8 \times \left( \frac{1}{2} \right)^2 = 2 \]
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.