Solution: Rewrite the limit as follows:
\[ \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{e^{x^2} - 1} = \lim_{x \to 0} \left( \frac{\int_0^x f(t) \, dt}{x} \times \frac{x}{e^{x^2} - 1} \right) \]
Evaluate each part separately:
For the first part, use L'Hôpital's Rule:
\[ \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{x} = \lim_{x \to 0} f(x) = f(0) = \frac{1}{2} \]
For the second part, apply the Taylor series expansion \( e^{x^2} \approx 1 + x^2 \) near \( x = 0 \):
\[ \lim_{x \to 0} \frac{x}{e^{x^2} - 1} = \lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} \frac{1}{x} = 1 \]
So, \( \alpha = \frac{1}{2} \). Then,
\[ 8\alpha^2 = 8 \times \left( \frac{1}{2} \right)^2 = 2 \]
The general solution of the differential equation: \[ (6x^2 - 2xy - 18x + 3y) dx - (x^2 - 3x) dy = 0 \]
$ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} $
Match List-I with List-II: List-I