Solution: Rewrite the limit as follows:
\[ \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{e^{x^2} - 1} = \lim_{x \to 0} \left( \frac{\int_0^x f(t) \, dt}{x} \times \frac{x}{e^{x^2} - 1} \right) \]
Evaluate each part separately:
For the first part, use L'Hôpital's Rule:
\[ \lim_{x \to 0} \frac{\int_0^x f(t) \, dt}{x} = \lim_{x \to 0} f(x) = f(0) = \frac{1}{2} \]
For the second part, apply the Taylor series expansion \( e^{x^2} \approx 1 + x^2 \) near \( x = 0 \):
\[ \lim_{x \to 0} \frac{x}{e^{x^2} - 1} = \lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} \frac{1}{x} = 1 \]
So, \( \alpha = \frac{1}{2} \). Then,
\[ 8\alpha^2 = 8 \times \left( \frac{1}{2} \right)^2 = 2 \]
\[ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} \]
\[ f(x) = \begin{cases} \frac{(4^x - 1)^4 \cot(x \log 4)}{\sin(x \log 4) \log(1 + x^2 \log 4)}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases} \]
Find \( e^k \) if \( f(x) \) is continuous at \( x = 0 \).
\[ y = \sqrt{\sin(\log(2x)) + \sqrt{\sin(\log(2x)) + \sqrt{\sin(\log(2x))} + \dots \infty}} \]