Given the hyperbola \( \frac{x^2}{9} - \frac{y^2}{b^2} = 1 \) with latus rectum subtending \( 60^\circ \) at the center, we have: \[ \tan 30^\circ = \frac{b^2 / a}{ae} = \frac{b^2}{a^2 e} = \frac{1}{\sqrt{3}} \]
This gives \( e = \frac{\sqrt{5}}{3} \). Using \( e^2 = 1 + \frac{b^2}{a^2} \):
\[ b^2 = 3b^4 + 27 \Rightarrow b^4 - 3b^2 - 27 = 0 \]
Solving, we get \( b^2 = \frac{1}{3}(1 + \sqrt{13}) \) with \( l = 2 \), \( m = 3 \), and \( n = 13 \).
Thus, \[ l^2 + m^2 + n^2 = 4 + 9 + 169 = 182 \]
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: