Given the hyperbola \( \frac{x^2}{9} - \frac{y^2}{b^2} = 1 \) with latus rectum subtending \( 60^\circ \) at the center, we have: \[ \tan 30^\circ = \frac{b^2 / a}{ae} = \frac{b^2}{a^2 e} = \frac{1}{\sqrt{3}} \]
This gives \( e = \frac{\sqrt{5}}{3} \). Using \( e^2 = 1 + \frac{b^2}{a^2} \):
\[ b^2 = 3b^4 + 27 \Rightarrow b^4 - 3b^2 - 27 = 0 \]
Solving, we get \( b^2 = \frac{1}{3}(1 + \sqrt{13}) \) with \( l = 2 \), \( m = 3 \), and \( n = 13 \).
Thus, \[ l^2 + m^2 + n^2 = 4 + 9 + 169 = 182 \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).