To find the area of the parallelogram \(ABCD\), where \(A(2, 3, 5)\) and \(C(-3, 4, -2)\) are opposite vertices and the diagonal vector \(\overrightarrow{BD} = \hat{i} + 2 \hat{j} + 3 \hat{k}\), we can follow these steps:
Thus, the area of the parallelogram is \(\frac{1}{2} \sqrt{474}\).
The area is given by:
Area = \( \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}| \)
Calculate \( \overrightarrow{AC} = (-5i + j - 7k) \) and \( \overrightarrow{BD} = i + 2j + 3k \) and find the cross product.
Then,
Area = \( \frac{1}{2} \sqrt{474} \)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 