To find the area of the parallelogram \(ABCD\), where \(A(2, 3, 5)\) and \(C(-3, 4, -2)\) are opposite vertices and the diagonal vector \(\overrightarrow{BD} = \hat{i} + 2 \hat{j} + 3 \hat{k}\), we can follow these steps:
Thus, the area of the parallelogram is \(\frac{1}{2} \sqrt{474}\).
The area is given by:
Area = \( \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}| \)
Calculate \( \overrightarrow{AC} = (-5i + j - 7k) \) and \( \overrightarrow{BD} = i + 2j + 3k \) and find the cross product.
Then,
Area = \( \frac{1}{2} \sqrt{474} \)
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.