The area is given by:
Area = \( \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}| \)
Calculate \( \overrightarrow{AC} = (-5i + j - 7k) \) and \( \overrightarrow{BD} = i + 2j + 3k \) and find the cross product.
Then,
Area = \( \frac{1}{2} \sqrt{474} \)
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are:
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).