Question:

Let \( A (2, 3, 5) \) and \( C(-3, 4, -2) \) be opposite vertices of a parallelogram \( ABCD \). If the diagonal \( \overrightarrow{BD} = \hat{i} + 2 \hat{j} + 3 \hat{k} \), then the area of the parallelogram is equal to

Updated On: Mar 20, 2025
  • \( \frac{1}{2} \sqrt{410} \)
  • \( \frac{1}{2} \sqrt{474} \)
  • \( \frac{1}{2} \sqrt{586} \)
  • \( \frac{1}{2} \sqrt{306} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The area is given by:

Area = \( \frac{1}{2} |\overrightarrow{AC} \times \overrightarrow{BD}| \)

Calculate \( \overrightarrow{AC} = (-5i + j - 7k) \) and \( \overrightarrow{BD} = i + 2j + 3k \) and find the cross product.

Then,

Area = \( \frac{1}{2} \sqrt{474} \)

Was this answer helpful?
0
0