\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \] \[ A^2 = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \] \[ A^2 = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix} \] \[ A^3 = \begin{bmatrix} 3 & -6 \\ 6 & -3 \end{bmatrix} \] \[ A^4 = \begin{bmatrix} 0 & -9 \\ -9 & -9 \end{bmatrix} \] \[ A^5 = \begin{bmatrix} -9 & -9 \\ 9 & -18 \end{bmatrix} \] \[ A^8 = \begin{bmatrix} 0 & -9 \\ 9 & -9 \end{bmatrix} \] \[ A^{13} = A^8 \times A^5 = \begin{bmatrix} 81 & 81 \\ -81 & 0 \end{bmatrix} \times \begin{bmatrix} -9 & -9 \\ 9 & -18 \end{bmatrix} \] \[ A^{13} = \left[ (-81)(-9) + (81 \times 9) \right] \quad \left[ (-81)(9) \right] \] \[ \text{Sum of diagonal} = (81 \times 27) = 34^3 \times 3^7 \] \[ \Rightarrow n = 7 \]
The given matrix is:
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}. \]
Compute successive powers of \(A\):
\[ A^2 = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix}. \]
\[ A^3 = A^2 \cdot A = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -6 \\ 6 & -3 \end{bmatrix}. \]
\[ A^4 = A^3 \cdot A = \begin{bmatrix} 3 & -6 \\ 6 & -3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -9 \\ 9 & -9 \end{bmatrix}. \]
\[ A^5 = A^4 \cdot A = \begin{bmatrix} 0 & -9 \\ 9 & -9 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -9 & -9 \\ 9 & -18 \end{bmatrix}. \]
\[ A^6 = A^5 \cdot A = \begin{bmatrix} -9 & -9 \\ 9 & -18 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -27 & 0 \\ 0 & -27 \end{bmatrix}. \]
\[ A^7 = A^6 \cdot A = \begin{bmatrix} -27 & 0 \\ 0 & -27 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 36 & -27 \\ -27 & 36 \end{bmatrix}. \]
Observe that the diagonal elements of \(A^7\) are \(36\) and \(36\). Their sum is:
\[ \text{Sum of diagonal elements} = 36 + 36 = 72 = 3^2 \cdot 3^5 = 3^7. \]
Thus:\[ n = 7. \]

Then, which one of the following is TRUE?
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: