The total number of elements in the first n rows is:
\[ S = 1 + 2 + 3 + \dots + T_n = \frac{n(n+1)}{2}. \]
To find the row containing 5310, solve:
\[ \frac{n(n+1)}{2} = 5310. \]
Start testing values:
\[ n = 100, \quad T_n = \frac{100 \cdot 101}{2} = 5050. \]
\[ n = 101, \quad T_n = \frac{101 \cdot 102}{2} = 5151. \]
\[ n = 102, \quad T_n = \frac{102 \cdot 103}{2} = 5253. \]
\[ n = 103, \quad T_n = \frac{103 \cdot 104}{2} = 5356. \]
Since 5310 lies between 5253 and 5356, it is in the 103rd row.
Final Answer: 103.
If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + ... \infty = \frac{\pi^4}{90}, $ $ \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + ... \infty = \alpha, $ $ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + ... \infty = \beta, $ then $ \frac{\alpha}{\beta} $ is equal to:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol$^{-1}$)