
5310 is located, determine the smallest n such that: \( T_n \geq 5310 \).5310 is in the 103rd row.The total number of elements in the first n rows is:
\[ S = 1 + 2 + 3 + \dots + T_n = \frac{n(n+1)}{2}. \]
To find the row containing 5310, solve:
\[ \frac{n(n+1)}{2} = 5310. \]
Start testing values:
\[ n = 100, \quad T_n = \frac{100 \cdot 101}{2} = 5050. \]
\[ n = 101, \quad T_n = \frac{101 \cdot 102}{2} = 5151. \]
\[ n = 102, \quad T_n = \frac{102 \cdot 103}{2} = 5253. \]
\[ n = 103, \quad T_n = \frac{103 \cdot 104}{2} = 5356. \]
Since 5310 lies between 5253 and 5356, it is in the 103rd row.
Final Answer: 103.
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 