The total number of elements in the first n rows is:
\[ S = 1 + 2 + 3 + \dots + T_n = \frac{n(n+1)}{2}. \]
To find the row containing 5310, solve:
\[ \frac{n(n+1)}{2} = 5310. \]
Start testing values:
\[ n = 100, \quad T_n = \frac{100 \cdot 101}{2} = 5050. \]
\[ n = 101, \quad T_n = \frac{101 \cdot 102}{2} = 5151. \]
\[ n = 102, \quad T_n = \frac{102 \cdot 103}{2} = 5253. \]
\[ n = 103, \quad T_n = \frac{103 \cdot 104}{2} = 5356. \]
Since 5310 lies between 5253 and 5356, it is in the 103rd row.
Final Answer: 103.
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: