To solve this problem, we need to analyze the relation \( R \) defined on the set \( A = \{1, 2, 3, 4, 5\} \) by the condition \( xRy \) if and only if \( 4x \leq 5y \).
First, consider and list all pairs \((x, y)\) satisfying the condition \( 4x \leq 5y \):
| \( x \) | Possible \( y \) |
|---|---|
| 1 | \( (1, 1), (1, 2), (1, 3), (1, 4), (1, 5) \) |
| 2 | \( (2, 2), (2, 3), (2, 4), (2, 5) \) |
| 3 | \( (3, 3), (3, 4), (3, 5) \) |
| 4 | \( (4, 4), (4, 5) \) |
| 5 | \( (5, 5) \) |
Counting all these pairs, we have \( m = 15 \) elements in \( R \).
Next, we need to make \( R \) symmetric. A relation is symmetric if, whenever \((x, y) \in R\), then \((y, x) \in R\) as well. Our task is to make this relation symmetric by adding the minimum number of pairs.
Let's analyze:
Summing the extra pairs needed: \((3, 2), (4, 2), (5, 2), (4, 3), (5, 3), (5, 4)\), we must add \( n = 10 \) pairs to ensure all relations are symmetric.
Adding these pairs to the existing 15 elements in \( R \), we have \( m + n = 15 + 10 = 25 \).
The final answer is 25, which means:
Given: \( 4x \leq 5y \)
then
\[ R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3), (3,4), (3,5), (4,4), (4,5), (5,4), (5,5)\} \]
i.e., 16 elements.
i.e., \( n = 16 \)
Now to make \( R \) a symmetric relation, add:
\[ \{(2,1), (3,2), (4,3), (1,4), (2,5), (3,4), (1,5), (2,1)\} \]
i.e., \( m = 9 \)
So \( m + n = 25 \)
A relation R is defined in the set N as follows:
R = (x, y) : x = y - 3, y > 3
Then, which of the following is correct?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).