Given: \( 4x \leq 5y \)
then
\[ R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3), (3,4), (3,5), (4,4), (4,5), (5,4), (5,5)\} \]
i.e., 16 elements.
i.e., \( n = 16 \)
Now to make \( R \) a symmetric relation, add:
\[ \{(2,1), (3,2), (4,3), (1,4), (2,5), (3,4), (1,5), (2,1)\} \]
i.e., \( m = 9 \)
So \( m + n = 25 \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: