If \( p \neq a \), \( q \neq b \), \( r \neq c \), and the system of equations \[ px + ay + az = 0 \] \[ bx + qy + bz = 0 \] \[ cx + cy + rz = 0 \] has a non-trivial solution, then the value of \[ \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} \] is:
The smallest positive integral value of \( n \) such that \[ \left( \frac{1 + \sin \frac{\pi}{8} + i \cos \frac{\pi}{8}}{1 + \sin \frac{\pi}{8} - i \cos \frac{\pi}{8}} \right)^n \] is purely imaginary, is equal to:
If \(f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12,\) then f(x) is