Let the direction ratios of the line \( L \) be \( \hat{i} - \hat{k} \).
Step 1: The foot of the perpendicular \( N \) lies on the line \( L \), so let \( \overrightarrow{N} = (\lambda, 0, -\lambda) \).
Step 2: The vector \( \overrightarrow{PN} = (\lambda - 1, 0 - 2, -\lambda + 1) = (\lambda - 1, -2, -\lambda + 1) \). The vector \( \overrightarrow{PQ} \) is parallel to the plane, so its direction ratios are proportional to the normal vector \( \mathbf{n} = \hat{i} + \hat{j} + 2\hat{k} \).
Step 3: Now, calculate the cosine of the angle between the two lines \( PN \) and \( PQ \) using the dot product formula: \[ \cos \alpha = \frac{\overrightarrow{PN} \cdot \overrightarrow{PQ}}{|\overrightarrow{PN}| |\overrightarrow{PQ}|} \] After calculation, we find: \[ \cos \alpha = \frac{1}{\sqrt{3}} \]