The ratio in which the YZ-plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5, 8) is 2 : m. The value of m is:
Length of tangent from (3,4) to x2+y2 = 9?
If \( \alpha, \beta, \gamma \in [0, \pi] \) and if \( \alpha, \beta, \gamma \) are in AP, then \[ \frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha} \] {is equal to:}
Let $ f(x) = \int \frac{x^2 \, dx}{(1 + x^2)(1 + \sqrt{1 + x^2})} $ and $ f(0) = 0 $, then the value of $ f(A) $ is:
If \[ \left[ \begin{array}{cc} 1 & -\tan(\theta) \\ \tan(\theta) & 1 \end{array} \right] \left[ \begin{array}{cc} 1 & \tan(\theta) \\ -\tan(\theta) & 1 \end{array} \right]^{-1} = \left[ \begin{array}{cc} a & -b \\ b & a \end{array} \right], \] then: