Step 1: Given Curves
The given curves are:
\[
x = y^2 - 2 \quad \text{and} \quad x = y
\]
Step 2: Find the Points of Intersection
To find the points of intersection, set the equations equal to each other:
\[
y^2 - 2 = y
\]
Rearrange the equation:
\[
y^2 - y - 2 = 0
\]
Factor the quadratic equation:
\[
(y - 2)(y + 1) = 0
\]
Thus, the points of intersection are \( y = 2 \) and \( y = -1 \).
Step 3: Set up the Integral for the Area
The area between the curves is given by:
\[
\text{Area} = \int_{y_1}^{y_2} \left( x_{\text{right}} - x_{\text{left}} \right) dy
\]
Here, the right curve is \( x = y \), and the left curve is \( x = y^2 - 2 \). Thus, the area is:
\[
\text{Area} = \int_{-1}^{2} \left( y - (y^2 - 2) \right) dy
\]
Step 4: Simplify the Integral
Simplify the integrand:
\[
y - (y^2 - 2) = y - y^2 + 2
\]
Thus, the area becomes:
\[
\text{Area} = \int_{-1}^{2} (-y^2 + y + 2) \, dy
\]
Step 5: Compute the Integral
Now, compute the integral:
\[
\text{Area} = \int_{-1}^{2} (-y^2 + y + 2) \, dy
\]
Break the integral into separate terms:
\[
\text{Area} = \int_{-1}^{2} -y^2 \, dy + \int_{-1}^{2} y \, dy + \int_{-1}^{2} 2 \, dy
\]
1. For \( \int_{-1}^{2} -y^2 \, dy \):
\[
\int_{-1}^{2} -y^2 \, dy = -\left[ \frac{y^3}{3} \right]_{-1}^{2} = -\left( \frac{2^3}{3} - \frac{(-1)^3}{3} \right) = -\left( \frac{8}{3} + \frac{1}{3} \right) = -\frac{9}{3} = -3
\]
2. For \( \int_{-1}^{2} y \, dy \):
\[
\int_{-1}^{2} y \, dy = \left[ \frac{y^2}{2} \right]_{-1}^{2} = \frac{2^2}{2} - \frac{(-1)^2}{2} = \frac{4}{2} - \frac{1}{2} = \frac{3}{2}
\]
3. For \( \int_{-1}^{2} 2 \, dy \):
\[
\int_{-1}^{2} 2 \, dy = 2 \left[ y \right]_{-1}^{2} = 2 \left( 2 - (-1) \right) = 2 \times 3 = 6
\]
Step 6: Add the Results
Now, add the results of the integrals:
\[
\text{Area} = -3 + \frac{3}{2} + 6 = 3 + \frac{3}{2} = \frac{6}{2} + \frac{3}{2} = \frac{9}{2}
\]
Step 7: Conclusion
The area of the region bounded by the curves is:
\[
\boxed{\frac{9}{2}}
\]