Given curves \( x = y^2 - 2 \) and \( x = y \), the points of intersection are \( (-2, 0) \) and \( (2, 2) \).
To find the area, we integrate the difference between the two functions over the range from \( y = -2 \) to \( y = 2 \):
\[
A = \int_{-1}^{2} y \, dy - \int_{-1}^{2} (y^2 - 2) \, dy \]
\[= \left[\frac{y^2}{2} - \frac{y^3}{3} + 2y\right]_{-1}^{2} = \left(\frac{4}{2} - \frac{8}{3} + 4\right) - \left(\frac{1}{2} + \frac{1}{3} - 2\right)\]
\[= \frac{10}{3} + \frac{7}{6} = \frac{27}{6} = \frac{9}{2}
\]
Thus, the area is \( \frac{9}{7} \).