>
BITSAT
List of top Questions asked in BITSAT
If \( a>0, b>0, c>0 \) and \( a, b, c \) are distinct, then \( (a + b)(b + c)(c + a) \) is greater than:
BITSAT - 2024
BITSAT
Mathematics
sets
At an election, a voter may vote for any number of candidates not exceeding the number to be elected. If 4 candidates are to be elected out of the 12 contested in the election and voter votes for at least one candidate, then the number of ways of selections is:
BITSAT - 2024
BITSAT
Mathematics
range
If \( a, c, b \) are in GP, then the area of the triangle formed by the lines \( ax + by + c = 0 \) with the coordinate axes is equal to:
BITSAT - 2024
BITSAT
Mathematics
Vectors
A book contains 1000 pages. A page is chosen at random. The probability that the sum of the digits of the marked number on the page is equal to 9, is
BITSAT - 2024
BITSAT
Mathematics
Probability
If \( \vec{a} = 2\hat{i} + \hat{j} + 2\hat{k} \), then the value of \( |\hat{i} \times (\vec{a} \times \hat{i})| + |\hat{j} \times (\vec{a} \times \hat{j})| + |\hat{k} \times (\vec{a} \times \hat{k})|^2 \) is equal to:}
BITSAT - 2024
BITSAT
Mathematics
Algebra
If \( \tan^{-1}\left(\frac{1}{1+1\cdot2}\right) + \tan^{-1}\left(\frac{1}{1+2\cdot3}\right) + \ldots + \tan^{-1}\left(\frac{1}{1+n(n+1)}\right) = \tan^{-1}(x) \), then \( x \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Trigonometry
If \( A = 1 + r^a + r^{2a} + r^{3a} + \dots \infty \) and \( B = 1 + r^b + r^{2b} + r^{3b} + \dots \infty \), then \( \frac{a}{b} \) is equal.
BITSAT - 2024
BITSAT
Mathematics
Series
Let \( ABC \) be a triangle and \( \vec{a}, \vec{b}, \vec{c} \) be the position vectors of \( A, B, C \) respectively. Let \( D \) divide \( BC \) in the ratio \( 3:1 \) internally and \( E \) divide \( AD \) in the ratio \( 4:1 \) internally. Let \( BE \) meet \( AC \) in \( F \). If \( E \) divides \( BF \) in the ratio \( 3:2 \) internally then the position vector of \( F \) is:
BITSAT - 2024
BITSAT
Mathematics
Vectors
For two events A and B, if \(P(A) = P(A/B) = \frac{1}{4}\) and \(P(B/A) = \frac{1}{2}\), then which of the following is not true?
BITSAT - 2024
BITSAT
Mathematics
Event
If \( z_1, z_2, \dots, z_n \) are complex numbers such that \( |z_1| = |z_2| = \dots = |z_n| = 1 \), then \( |z_1 + z_2 + \dots + z_n| \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
complex numbers
A person invites a party of 10 friends at dinner and places so that 4 are on one round table and 6 on the other round table. Total number of ways in which he can arrange the guests is:
BITSAT - 2024
BITSAT
Mathematics
range
If \( \tan 15^\circ \) and \( \tan 30^\circ \) are the roots of the equation \( x^2 + px + q = 0 \), then \( pq = \):
BITSAT - 2024
BITSAT
Mathematics
Rational Number
If \( 22 P_{r+1} : 20 P_{r+2} = 11 : 52 \), then \( r \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
range
If \( \frac{dy}{dx} - y \log_e 2 = 2^{\sin x} (\cos x - 1) \log_e 2 \), then \( y \) is:
BITSAT - 2024
BITSAT
Mathematics
Application of derivatives
If the area bounded by the curves \( y = ax^2 \) and \( x = ay^2 \) (where \( a>0 \)) is 3 sq. units, then the value of \( a \) is:
BITSAT - 2024
BITSAT
Mathematics
Application of derivatives
If the arithmetic mean of two distinct positive real numbers \(a\) and \(b\) (where \(a>b\)) is twice their geometric mean, then \(a : b\) is:
BITSAT - 2024
BITSAT
Mathematics
Algebra
In a binomial distribution, the mean is 4 and variance is 3. Then, its mode is:
BITSAT - 2024
BITSAT
Mathematics
binomial distribution
How many different nine-digit numbers can be formed from the number 223355888 by rearranging its digits so that the odd digits occupy even positions?
BITSAT - 2024
BITSAT
Mathematics
range
Let \( \mathbf{a} = \hat{i} - \hat{k}, \mathbf{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \mathbf{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k} \). Then, \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] \) depends on:}
BITSAT - 2024
BITSAT
Mathematics
Vectors
If \( \sum_{k=1}^{n} k(k+1)(k-1) = pn^4 + qn^3 + tn^2 + sn \), where \( p, q, t, s \) are constants, then the value of \( s \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Series
If \( |z_1| = 2, |z_2| = 3, |z_3| = 4 \) and \( |2z_1 + 3z_2 + 4z_3| = 4 \), then the absolute value of \( 8z_2z_3 + 27z_1z_3 + 64z_1z_2 \) equals:
BITSAT - 2024
BITSAT
Mathematics
complex numbers
Let the foot of perpendicular from a point \( P(1,2,-1) \) to the straight line \( L : \frac{x}{1} = \frac{y}{0} = \frac{z}{-1} \) be \( N \). Let a line be drawn from \( P \) parallel to the plane \( x + y + 2z = 0 \) which meets \( L \) at point \( Q \). If \( \alpha \) is the acute angle between the lines \( PN \) and \( PQ \), then \( \cos \alpha \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Plane
Let the acute angle bisector of the two planes \( x - 2y - 2z + 1 = 0 \) and \( 2x - 3y - 6z + 1 = 0 \) be the plane \( P \). Then which of the following points lies on \( P \)?
BITSAT - 2024
BITSAT
Mathematics
Plane
If \( z, \bar{z}, -z, -\bar{z} \) forms a rectangle of area \( 2\sqrt{3} \) square units, then one such \( z \) is:
BITSAT - 2024
BITSAT
Mathematics
complex numbers
If the number of available constraints is 3 and the number of parameters to be optimised is 4, then
BITSAT - 2024
BITSAT
Mathematics
Algebra
Prev
1
2
3
...
53
Next