>
Exams
>
Mathematics
>
Series
>
the coefficient of x n in the expansion of frac e
Question:
The coefficient of \(x^n\) in the expansion of \[\frac{e^{7x} + e^x}{e^{3x}}\] is:
Show Hint
When combining terms from exponential expansions, ensure consistent base and power adjustments to match given options.
BITSAT - 2024
BITSAT
Updated On:
Jan 13, 2026
\(\frac{4^{n-1} \cdot (-2)^n}{n!}\)
\(\frac{4^n - 1 \cdot (2)^n}{n!}\)
\(\frac{4^n + (-2)^n}{n!}\)
\(\frac{4^n - 1 \cdot (-2)^{n-1}}{n!}\)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
The given expression can be expanded using the Maclaurin series for \(e^x\): Given,
\[\frac{e^{7x} + e^x}{e^{3x}} \Rightarrow e^{4x} + e^{-2x}\] {Series of } \(e^a = 1 + \frac{a}{1!} + \frac{a^2}{2!} + \frac{a^3}{3!} + \dots\)
\[\Rightarrow e^{4x} + e^{-2x} = \left(1 + \frac{4x}{1!} + \frac{(4x)^2}{2!} + \frac{(4x)^3}{3!} + \dots\right) + \left(1 + \frac{(-2x)}{1!} + \frac{(-2x)^2}{2!} + \dots\right)\] \[ \begin{aligned} x^2 &\equiv \frac{4^2}{2!} + \frac{(-2)^2}{2!} \\ x^3 &\equiv \frac{4^3}{3!} + \frac{(-2)^3}{3!} \\ \vdots \\ x^n &= \frac{4^n}{n!} + \frac{(-2)^n}{n!} \end{aligned} \] This matches option (C), providing the correct coefficient for \(x^n\).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Series
Let \[ S=\frac{1}{2!5!}+\frac{1}{3!2!3!}+\frac{1}{5!2!1!}+\cdots \text{ up to 13 terms}. \] If $13S=\dfrac{2^k}{n!}$, $k\in\mathbb{N}$, then $n+k$ is equal to
JEE Main - 2026
Mathematics
Series
View Solution
Given the series
$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \cdots = \frac{\pi^4}{90},$
$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots = \alpha,$
$\frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \cdots = \beta.$
Then find
$\frac{\alpha}{\beta}$
JEE Main - 2025
Mathematics
Series
View Solution
The value of
$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^3 + 6k^2 + 11k + 5}{(k+3)!}$ is:
JEE Main - 2025
Mathematics
Series
View Solution
Find the wrong term in the letter-number series: Q1F, S2E, U6D, W12C, Y88B
Karnataka PGCET - 2025
Logical Reasoning
Series
View Solution
Find the missing term in the following series: 1, 3, 4, 9, ___, 27, 10
Karnataka PGCET - 2025
Logical Reasoning
Series
View Solution
View More Questions
Questions Asked in BITSAT exam
What is the dot product of the vectors \( \mathbf{a} = (2, 3, 1) \) and \( \mathbf{b} = (1, -1, 4) \)?
BITSAT - 2025
Vector Algebra
View Solution
Find the determinant of the matrix \( A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \).
BITSAT - 2025
Matrices
View Solution
A convex lens has focal length 20 cm. An object is placed at a distance of 40 cm from the lens. What is the position of the image formed?
BITSAT - 2025
Ray optics and optical instruments
View Solution
What is the value of \( \sin 30^\circ \)?
BITSAT - 2025
Trigonometry
View Solution
The area enclosed between the curve \(y = \log_e(x + e)\) and the coordinate axes is:
BITSAT - 2025
Fundamental Theorem of Calculus
View Solution
View More Questions