Given vectors:
\[
\vec{OA} = \vec{a}, \quad \vec{OB} = \vec{b}, \quad \vec{OC} = \vec{c}
\]
Now, the Position Vector (PV) of point \( D \) is:
\[
\vec{OD} = \frac{1}{1+3}(\vec{OB} + 3\vec{OC}) = \frac{1}{4}(\vec{b} + 3\vec{c})
\]
The Position Vector of point \( E \) is:
\[
\vec{OE} = \frac{4\vec{OD} + \vec{OA}}{4+1} = \frac{1}{5}(4(\frac{1}{4}(\vec{b} + 3\vec{c})) + \vec{a}) = \frac{1}{5}(\vec{a} + \vec{b} + 3\vec{c})
\]
Now, the Position Vector of point \( F \) is calculated by:
\[
\vec{OF} = \frac{20\vec{OB} + 30\vec{OC}}{2+3} = \frac{50\vec{OE} - 20\vec{OB}}{3} = \frac{50(\frac{1}{5}(\vec{a} + \vec{b} + 3\vec{c})) - 20\vec{b}}{3}
\]
\[
\vec{OF} = \frac{10(\vec{a} + \vec{b} + 3\vec{c}) - 20\vec{b}}{3} = \frac{10\vec{a} - 10\vec{b} + 30\vec{c}}{3} = \frac{10(\vec{a} - \vec{b} + 3\vec{c})}{3}
\]
\[
\vec{OF} = \frac{\vec{a} - \vec{b} + 3\vec{c}}{3}
\]
Hence, the Position Vector of \( F \) is:
\[
\vec{OF} = \frac{1}{3} (\vec{a} - \vec{b} + 3\vec{c})
\]