Step 1: The equation is:
\[ \frac{dy}{dx} - y \log_e 2 = 2^{\sin x} (\cos x - 1) \log_e 2 \]
\[ {This is a linear differential equation.} \]
\[ {I.F. } = e^{-\int \log_e 2 \, dx} = e^{-x \log_e 2} = 2^{-x} \]
\[ {Then the general solution is} \]
\[ y 2^{-x} = \int 2^{-x} 2^{\sin x} (\cos x - 1) \log_e 2 \, dx + c \]
\[ {Now let } \sin x - x = t \Rightarrow (\cos x - 1) dx = dt \]
\[ \therefore y 2^{-x} = \log_e 2 \int 2^t \, dt + c \]
\[ \therefore y 2^{-x} = 2^t + c \]
\[ \therefore y = 2^{x+t} + c 2^x \]
\[ y = 2^{\sin x} + c 2^x \]
Thus, the solution is \( y = 2\sin x + c2^x \).