Question:

The function \( f(x) = \tan^{-1}(\sin x + \cos x) \) is an increasing function in:

Show Hint

To determine where a function is increasing, find the derivative and solve for intervals where the derivative is positive.
Updated On: Apr 3, 2025
  • \( \left( \frac{\pi}{4}, \frac{\pi}{2} \right) \)
  • \( \left( -\frac{\pi}{2}, \frac{\pi}{4} \right) \)
  • \( \left( 0, \frac{\pi}{2} \right) \)
  • \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: We are given the function \( f(x) = \tan^{-1}(\sin x + \cos x) \). 
To determine the intervals where this function is increasing, we need to find the derivative of \( f(x) \). 
The derivative of \( f(x) \) can be found using the chain rule: \[ f'(x) = \frac{d}{dx} \left( \tan^{-1}(\sin x + \cos x) \right) = \frac{1}{1 + (\sin x + \cos x)^2} \cdot \frac{d}{dx} (\sin x + \cos x). \] 
Step 2: The derivative of \( \sin x + \cos x \) is: \[ \frac{d}{dx} (\sin x + \cos x) = \cos x - \sin x. \] 
Therefore, the derivative of \( f(x) \) is: \[ f'(x) = \frac{\cos x - \sin x}{1 + (\sin x + \cos x)^2}. \] 
Step 3: For \( f(x) \) to be increasing, \( f'(x)>0 \). 
This means that the numerator \( \cos x - \sin x \) must be positive. 
So, we need to solve: \[ \cos x - \sin x>0. \] 
Rewriting this inequality: 
\[ \cos x>\sin x. \] 
This inequality holds in the interval \( \left( -\frac{\pi}{2}, \frac{\pi}{4} \right) \), because in this interval, \( \cos x \) is greater than \( \sin x \). 
Step 4: Thus, the function \( f(x) = \tan^{-1}(\sin x + \cos x) \) is increasing in the interval \( \left( -\frac{\pi}{2}, \frac{\pi}{4} \right) \).

Was this answer helpful?
0
0