Step 1: We are given the function \( f(x) = \tan^{-1}(\sin x + \cos x) \).
To determine the intervals where this function is increasing, we need to find the derivative of \( f(x) \).
The derivative of \( f(x) \) can be found using the chain rule: \[ f'(x) = \frac{d}{dx} \left( \tan^{-1}(\sin x + \cos x) \right) = \frac{1}{1 + (\sin x + \cos x)^2} \cdot \frac{d}{dx} (\sin x + \cos x). \]
Step 2: The derivative of \( \sin x + \cos x \) is: \[ \frac{d}{dx} (\sin x + \cos x) = \cos x - \sin x. \]
Therefore, the derivative of \( f(x) \) is: \[ f'(x) = \frac{\cos x - \sin x}{1 + (\sin x + \cos x)^2}. \]
Step 3: For \( f(x) \) to be increasing, \( f'(x)>0 \).
This means that the numerator \( \cos x - \sin x \) must be positive.
So, we need to solve: \[ \cos x - \sin x>0. \]
Rewriting this inequality:
\[ \cos x>\sin x. \]
This inequality holds in the interval \( \left( -\frac{\pi}{2}, \frac{\pi}{4} \right) \), because in this interval, \( \cos x \) is greater than \( \sin x \).
Step 4: Thus, the function \( f(x) = \tan^{-1}(\sin x + \cos x) \) is increasing in the interval \( \left( -\frac{\pi}{2}, \frac{\pi}{4} \right) \).
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be: