Equation of tangent of parabola \( y = x^2 \) be
\[
tx = y + at^2 \quad \dots (i)
\]
\[
y = tx - \frac{t^2}{4}
\]
Solve with \( y = -(x - 2)^2 \):
\[
tx - \frac{t^2}{4} = -(x - 2)^2
\]
\[
x^2 + x(t - 4) - \frac{t^2}{4} + 4 = 0
\]
Here, Discriminant \( = 0 \).
\[
(t - 4)^2 - 4 \cdot \left( 4 - \frac{t^2}{4} \right) = 0
\]
\[
\Rightarrow t^2 - 4t = 0 \Rightarrow t = 0 \quad {or} \quad t = 4
\]
Put value of \( t \) in eq. (i), then
\[
y = 4(x - 1).
\]