>
BITSAT
>
Mathematics
List of top Mathematics Questions asked in BITSAT
If \( a, c, b \) are in GP, then the area of the triangle formed by the lines \( ax + by + c = 0 \) with the coordinate axes is equal to:
BITSAT - 2024
BITSAT
Mathematics
Vectors
The angle between the lines whose direction cosines are given by the equations \( 3l + m + 5n = 0 \) and \( 6m - 2n + 5l = 0 \) is:
BITSAT - 2024
BITSAT
Mathematics
Vectors
If \( |z_1| = 2, |z_2| = 3, |z_3| = 4 \) and \( |2z_1 + 3z_2 + 4z_3| = 4 \), then the absolute value of \( 8z_2z_3 + 27z_1z_3 + 64z_1z_2 \) equals:
BITSAT - 2024
BITSAT
Mathematics
complex numbers
If \( \sum_{k=1}^{n} k(k+1)(k-1) = pn^4 + qn^3 + tn^2 + sn \), where \( p, q, t, s \) are constants, then the value of \( s \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Series
In a binomial distribution, the mean is 4 and variance is 3. Then, its mode is:
BITSAT - 2024
BITSAT
Mathematics
binomial distribution
The points represented by the complex numbers \( 1 + i, -2 + 3i, \frac{5}{3}i \) on the Argand plane are:
BITSAT - 2024
BITSAT
Mathematics
argand plane
Let the acute angle bisector of the two planes \( x - 2y - 2z + 1 = 0 \) and \( 2x - 3y - 6z + 1 = 0 \) be the plane \( P \). Then which of the following points lies on \( P \)?
BITSAT - 2024
BITSAT
Mathematics
Plane
If \( A = 1 + r^a + r^{2a} + r^{3a} + \dots \infty \) and \( B = 1 + r^b + r^{2b} + r^{3b} + \dots \infty \), then \( \frac{a}{b} \) is equal.
BITSAT - 2024
BITSAT
Mathematics
Series
The modulus of the complex number \( z \) such that \( |z + 3 - i| = 1 \) and \( \arg(z) = \pi \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
sets
How many different nine-digit numbers can be formed from the number 223355888 by rearranging its digits so that the odd digits occupy even positions?
BITSAT - 2024
BITSAT
Mathematics
range
Let \( \mathbf{a} = \hat{i} - \hat{k}, \mathbf{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \mathbf{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k} \). Then, \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] \) depends on:}
BITSAT - 2024
BITSAT
Mathematics
Vectors
Let the foot of perpendicular from a point \( P(1,2,-1) \) to the straight line \( L : \frac{x}{1} = \frac{y}{0} = \frac{z}{-1} \) be \( N \). Let a line be drawn from \( P \) parallel to the plane \( x + y + 2z = 0 \) which meets \( L \) at point \( Q \). If \( \alpha \) is the acute angle between the lines \( PN \) and \( PQ \), then \( \cos \alpha \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Plane
There are four numbers of which the first three are in GP and the last three are in AP, whose common difference is 6. If the first and the last numbers are equal, then the two other numbers are:
BITSAT - 2024
BITSAT
Mathematics
Series
Let \( ABC \) be a triangle and \( \vec{a}, \vec{b}, \vec{c} \) be the position vectors of \( A, B, C \) respectively. Let \( D \) divide \( BC \) in the ratio \( 3:1 \) internally and \( E \) divide \( AD \) in the ratio \( 4:1 \) internally. Let \( BE \) meet \( AC \) in \( F \). If \( E \) divides \( BF \) in the ratio \( 3:2 \) internally then the position vector of \( F \) is:
BITSAT - 2024
BITSAT
Mathematics
Vectors
At an election, a voter may vote for any number of candidates not exceeding the number to be elected. If 4 candidates are to be elected out of the 12 contested in the election and voter votes for at least one candidate, then the number of ways of selections is:
BITSAT - 2024
BITSAT
Mathematics
range
If \( z, \bar{z}, -z, -\bar{z} \) forms a rectangle of area \( 2\sqrt{3} \) square units, then one such \( z \) is:
BITSAT - 2024
BITSAT
Mathematics
complex numbers
If \( z_1, z_2, \dots, z_n \) are complex numbers such that \( |z_1| = |z_2| = \dots = |z_n| = 1 \), then \( |z_1 + z_2 + \dots + z_n| \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
complex numbers
The magnitude of projection of the line joining \( (3,4,5) \) and \( (4,6,3) \) on the line joining \( (-1,2,4) \) and \( (1,0,5) \) is:
BITSAT - 2024
BITSAT
Mathematics
Vectors
The number of arrangements of all digits of 12345 such that at least 3 digits will not come in its position is:
BITSAT - 2024
BITSAT
Mathematics
range
The sum of the infinite series \(1 + \frac{5}{6} + \frac{12}{6^2} + \frac{22}{6^3} + \frac{35}{6^4} + \dots\) is equal to:
BITSAT - 2024
BITSAT
Mathematics
Series
A person invites a party of 10 friends at dinner and places so that 4 are on one round table and 6 on the other round table. Total number of ways in which he can arrange the guests is:
BITSAT - 2024
BITSAT
Mathematics
range
If the area bounded by the curves \( y = ax^2 \) and \( x = ay^2 \) (where \( a>0 \)) is 3 sq. units, then the value of \( a \) is:
BITSAT - 2024
BITSAT
Mathematics
Application of derivatives
The area of the region bounded by the curves \( x = y^2 - 2 \) and \( x = y \) is:
BITSAT - 2024
BITSAT
Mathematics
Application of derivatives
If \( 22 P_{r+1} : 20 P_{r+2} = 11 : 52 \), then \( r \) is equal to:
BITSAT - 2024
BITSAT
Mathematics
range
If \( a>0, b>0, c>0 \) and \( a, b, c \) are distinct, then \( (a + b)(b + c)(c + a) \) is greater than:
BITSAT - 2024
BITSAT
Mathematics
sets
Prev
1
2
3
...
18
Next