Step 1: Understanding the Given Vectors
We are provided with three vectors:
- \( \mathbf{a} = \hat{i} - \hat{k} \)
- \( \mathbf{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k} \)
- \( \mathbf{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k} \)
The goal is to find the value of the scalar triple product \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] \), which is given by the determinant of the matrix formed by the components of the vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \).
Step 2: Set up the Determinant
The scalar triple product is defined as:
\[
[\mathbf{a} \, \mathbf{b} \, \mathbf{c}] = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 & 0 & -1 \\
x & 1 & 1 - x \\
y & x & 1 + x - y
\end{vmatrix}
\]
Step 3: Calculate the Determinant
We calculate the determinant of the 3x3 matrix:
\[
[\mathbf{a} \, \mathbf{b} \, \mathbf{c}] = \hat{i} \begin{vmatrix}
0 & -1 \\
1 & 1 - x
\end{vmatrix} - \hat{j} \begin{vmatrix}
1 & -1 \\
y & 1 + x - y
\end{vmatrix} + \hat{k} \begin{vmatrix}
1 & 0 \\
y & x
\end{vmatrix}
\]
We compute the individual 2x2 determinants:
1. For \( \hat{i} \)-component:
\[
\begin{vmatrix}
0 & -1 \\
1 & 1 - x
\end{vmatrix} = (0)(1 - x) - (-1)(1) = 1
\]
2. For \( \hat{j} \)-component:
\[
\begin{vmatrix}
1 & -1 \\
y & 1 + x - y
\end{vmatrix} = (1)(1 + x - y) - (-1)(y) = 1 + x - y + y = 1 + x
\]
3. For \( \hat{k} \)-component:
\[
\begin{vmatrix}
1 & 0 \\
y & x
\end{vmatrix} = (1)(x) - (0)(y) = x
\]
So, the scalar triple product becomes:
\[
[\mathbf{a} \, \mathbf{b} \, \mathbf{c}] = \hat{i}(1) - \hat{j}(1 + x) + \hat{k}(x)
\]
Simplifying:
\[
[\mathbf{a} \, \mathbf{b} \, \mathbf{c}] = \hat{i} - (1 + x)\hat{j} + x\hat{k}
\]
Step 4: Analyze the Dependence on \( x \) and \( y \)
Notice that the result contains no terms that depend on \( y \). Furthermore, the coefficients of \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \) do not involve \( x \) in such a way that the scalar triple product itself becomes zero for any non-trivial values of \( x \) and \( y \). Therefore, the scalar triple product does not depend on either \( x \) or \( y \).
Step 5: Conclusion
Thus, the scalar triple product \( [\mathbf{a} \, \mathbf{b} \, \mathbf{c}] \) does not depend on \( x \) or \( y \). The correct answer is:
\[
\boxed{\text{neither } x \text{ nor } y}
\]