Step 1: Calculating the Cross Product Using Vector Identities
We begin by applying the vector triple product identity to each term in the given problem. The vector identity is:
\[
\hat{i} \times (\hat{a} \times \hat{i}) = (\hat{i} \cdot \hat{i})\hat{a} - (\hat{i} \cdot \hat{a})\hat{i}
\]
Substituting the values into this identity for \( \hat{i} \), we get:
\[
\hat{i} \times (\hat{a} \times \hat{i}) = \hat{j} + 2\hat{k}
\]
Similarly, applying the identity for \( \hat{j} \) and \( \hat{k} \):
\[
\hat{j} \times (\hat{a} \times \hat{j}) = 2\hat{i} + 2\hat{k}
\]
\[
\hat{k} \times (\hat{a} \times \hat{k}) = 2\hat{i} + \hat{j}
\]
Step 2: Calculating the Magnitudes of the Resulting Vectors
Now, we calculate the magnitudes of each of the resulting vectors:
1. For \( \hat{j} + 2\hat{k} \):
\[
\left\| \hat{j} + 2\hat{k} \right\|^2 = \left\| \hat{j} \right\|^2 + 2 \left\| 2\hat{k} \right\|^2 = 1 + 2 \times 2 = 5
\]
2. For \( 2\hat{i} + 2\hat{k} \):
\[
\left\| 2\hat{i} + 2\hat{k} \right\|^2 = 2^2 + 2^2 = 4 + 4 = 8
\]
3. For \( 2\hat{i} + \hat{j} \):
\[
\left\| 2\hat{i} + \hat{j} \right\|^2 = 2^2 + 1^2 = 4 + 1 = 5
\]
Step 3: Summing the Magnitudes
Finally, we sum the magnitudes of the three resulting vectors:
\[
5 + 8 + 5 = 18
\]