Step 1: Given Equations
The given equations of the curves are:
\[
y = ax^2 \quad \text{and} \quad x = ay^2
\]
where \( a > 0 \).
Step 2: Find the Intersection Points
To find the points of intersection, substitute \( y = ax^2 \) into \( x = ay^2 \):
\[
x = a(ax^2)^2 = a^3 x^4
\]
Rearranging the equation gives:
\[
a^3 x^4 - x = 0
\]
Factor out \( x \):
\[
x(a^3 x^3 - 1) = 0
\]
Thus, \( x = 0 \) or \( a^3 x^3 = 1 \). Solving \( a^3 x^3 = 1 \) gives:
\[
x^3 = \frac{1}{a^3} \quad \Rightarrow \quad x = \frac{1}{a}
\]
So, the points of intersection are \( x = 0 \) and \( x = \frac{1}{a} \).
Step 3: Set up the Integral for Area
The area between the curves is given by:
\[
\text{Area} = \int_0^{\frac{1}{a}} \left( y_{\text{top}} - y_{\text{bottom}} \right) dx
\]
Here, the top curve is \( y = ax^2 \), and the bottom curve is \( y = \frac{x}{a} \) (from \( x = ay^2 \)).
Thus, the area is:
\[
\text{Area} = \int_0^{\frac{1}{a}} \left( ax^2 - \frac{x}{a} \right) dx
\]
Step 4: Compute the Integral
Now, compute the integral:
\[
\int_0^{\frac{1}{a}} \left( ax^2 - \frac{x}{a} \right) dx
\]
First, split the integral:
\[
\text{Area} = \int_0^{\frac{1}{a}} ax^2 \, dx - \int_0^{\frac{1}{a}} \frac{x}{a} \, dx
\]
Calculate each integral separately:
1. For \( \int_0^{\frac{1}{a}} ax^2 \, dx \):
\[
\int_0^{\frac{1}{a}} ax^2 \, dx = a \cdot \left[ \frac{x^3}{3} \right]_0^{\frac{1}{a}} = a \cdot \frac{1}{3a^3} = \frac{1}{3a^2}
\]
2. For \( \int_0^{\frac{1}{a}} \frac{x}{a} \, dx \):
\[
\int_0^{\frac{1}{a}} \frac{x}{a} \, dx = \frac{1}{a} \cdot \left[ \frac{x^2}{2} \right]_0^{\frac{1}{a}} = \frac{1}{a} \cdot \frac{1}{2a^2} = \frac{1}{2a^3}
\]
Thus, the total area is:
\[
\text{Area} = \frac{1}{3a^2} - \frac{1}{2a^3}
\]
Step 5: Set the Area Equal to 3
We are given that the area is 3 square units:
\[
\frac{1}{3a^2} - \frac{1}{2a^3} = 3
\]
To solve for \( a \), first find a common denominator:
\[
\frac{2}{6a^3} - \frac{3}{6a^3} = 3 \quad \Rightarrow \quad \frac{-1}{6a^3} = 3
\]
Now, multiply both sides by \( -6a^3 \):
\[
1 = -18a^3 \quad \Rightarrow \quad a^3 = \frac{1}{18}
\]
Thus, \( a = \frac{1}{3} \).
Step 6: Conclusion
The value of \( a \) is:
\[
\boxed{\frac{1}{3}}
\]