\[ We\ are\ given\ the\ curves\ y = ax^2 \ and\ x = ay^2. \]
\[ {When, } x=0 \Rightarrow y=0 { and } x=\frac{1}{a} \Rightarrow y=\frac{1}{a} \]
\[ {Here, points of intersection of curves } y=ax^2 { and } x=ay^2 { are } (0,0) { and } \left(\frac{1}{a}, \frac{1}{a}\right) \]
\[ \therefore { Required area } \]
\[ A = \int_{x=a}^{x=b} [f_2(x) - f_1(x)] \, dx \]
\[ 3 = \int_{0}^{1/a} \left(\frac{\sqrt{x}}{\sqrt{a}} - ax^2\right) \, dx \]
\[ 3 = \left[\frac{2}{3\sqrt{a}} x^{3/2} - \frac{ax^3}{3}\right]_0^{1/a} \]
\[ 3 = \frac{2}{3\sqrt{a}} \times \frac{1}{a\sqrt{a}} - \frac{a}{3} \times \frac{1}{a^3} \]
\[ 3 = \frac{2}{3a^2} - \frac{1}{3a^2} \]
\[ 3 = \frac{1}{3a^2} \]
\[ 9a^2 = 1 \]
\[ a^2 = \frac{1}{9} \Rightarrow a = \frac{1}{3} \]
\[ Solving\ for\ a, \ we\ get\ a = \frac{1}{3}. \]