Given two events A and B, we have:
1. Probabilities:- \(P(A) = \frac{1}{4}\)
- \(P(A/B) = \frac{1}{4}\)
- \(P(B/A) = \frac{1}{2}\)
2. Determine independence:Two events A and B are independent if \(P(A \cap B) = P(A) \cdot P(B)\). For \(P(A \cap B)\), use the conditional probability formula:
\(P(A/B) = \frac{P(A \cap B)}{P(B)}\)
Thus, \(P(A \cap B) = P(A/B) \cdot P(B)\). Given \(P(A/B) = \frac{1}{4}\), we get:
\(P(A \cap B) = \frac{1}{4} \cdot P(B)\)
Now use \(P(B/A) = \frac{P(A \cap B)}{P(A)}\):
\(\frac{1}{2} = \frac{P(A \cap B)}{\frac{1}{4}}\)
which gives \(P(A \cap B) = \frac{1}{8}\). Therefore:
\(P(B) = \frac{1}{2}\)
Check independence:
Since \(P(A \cap B) = \frac{1}{8}\) and \(P(A) \cdot P(B) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}\), A and B are independent.
3. Other conditions:- \(P(comp(A)/B) = 1 - P(A/B) = 1 - \frac{1}{4} = \frac{3}{4}\)
- \(P(comp(B)/comp(A)) = 1 - P(B/A) = 1 - \frac{1}{2} = \frac{1}{2}\)
Conclusion: All statements are consistent based on the given probabilities. Thus, the correct answer is:
None of these