The given quadratic equation is:
\[
(p - q)x^2 + (q - r)x + (r - p) = 0
\]
Step 1: Comparing with the standard quadratic equation.
A quadratic equation is generally given as:
\[
ax^2 + bx + c = 0
\]
From the given equation:
- \( a = (p - q) \)
- \( b = (q - r) \)
- \( c = (r - p) \)
Using the quadratic formula:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
Step 2: Substituting values.
\[
x = \frac{-(q - r) \pm \sqrt{(q - r)^2 - 4(p - q)(r - p)}}{2(p - q)}
\]
Expanding the discriminant:
\[
(q - r)^2 - 4(p - q)(r - p) = (q - r)^2 - 4(p - q)(r - p)
\]
Solving the quadratic equation, one root simplifies to:
\[
x = \frac{r - p}{p - q}
\]
The other root is:
\[
x = 1
\]
Thus, the roots of the equation are \( \frac{r - p}{p - q} \) and 1.