If matrix \[ A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}, \] then find \( A^{-1} \).
If \[ A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] prove that \[ A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}, \] where \( n \in \mathbb{N} \).
Find the minimum value of ( z = x + 3y ) under the following constraints:
• x + y ≤ 8• 3x + 5y ≥ 15• x ≥ 0, y ≥ 0
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]
If \( R \) is the relation "less than" from \( A = \{1,2,3,4,5\} \) to \( B = \{1,4,5\} \), find the set of ordered pairs corresponding to \( R \). Also, define this relation from \( B \) to \( A \).