Step 1: Use integral transformation property.
Let
\[
I = \int_0^{\pi/2} \sin 2x \tan^{-1} (\sin x) \,dx
\]
Using the property:
\[
\int_0^a f(x) \,dx = \int_0^a f(a - x) \,dx
\]
Substituting \( x = \frac{\pi}{2} - t \), we get:
\[
I = \int_0^{\pi/2} \sin 2x \tan^{-1} (\cos x) \,dx
\]
Step 2: Add both integrals.
\[
2I = \int_0^{\pi/2} \sin 2x \left[ \tan^{-1} (\sin x) + \tan^{-1} (\cos x) \right] \,dx
\]
Using the identity:
\[
\tan^{-1} (\sin x) + \tan^{-1} (\cos x) = \frac{\pi}{4}
\]
we get:
\[
2I = \frac{\pi}{4} \int_0^{\pi/2} \sin 2x \,dx
\]
Step 3: Compute the integral.
\[
\int_0^{\pi/2} \sin 2x \,dx = \left[ -\frac{\cos 2x}{2} \right]_0^{\pi/2}
\]
\[
= \frac{1}{2} (1 - (-1)) = 1
\]
\[
2I = \frac{\pi}{4} \times 1 = \frac{\pi}{4}
\]
\[
I = \frac{\pi}{2} - 1
\]
Final Answer:
\[
I = \frac{\pi}{2} - 1
\]