Step 1: Take natural logarithm on both sides.
\[
\ln y = \sin x \ln (\cos x)
\]
Step 2: Differentiate both sides using chain rule.
\[
\frac{1}{y} \frac{dy}{dx} = \cos x \ln (\cos x) + \frac{\sin x (-\sin x)}{\cos x}
\]
Step 3: Solve for \( \frac{dy}{dx} \).
\[
\frac{dy}{dx} = y \left( \cos x \ln (\cos x) - \sin^2 x \right)
\]
Substituting \( y = (\cos x)^{\sin x} \),
\[
\frac{dy}{dx} = (\cos x)^{\sin x} \left( \cos x \ln (\cos x) - \sin^2 x \right).
\]