The function \( f(x) = |x| \) can be written as:
\[
f(x) =
\begin{cases}
x & \text{if } x \geq 0,
-x & \text{if } x<0.
\end{cases}
\]
The left-hand derivative at \( x = 0 \):
\[
f'(0^-) = \lim_{h \to 0^-} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^-} \frac{-h - 0}{h} = -1.
\]
The right-hand derivative at \( x = 0 \):
\[
f'(0^+) = \lim_{h \to 0^+} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h - 0}{h} = 1.
\]
Since \( f'(0^-) \neq f'(0^+) \), \( f(x) \) is not differentiable at \( x = 0 \).